Cockpit of a Hawker Siddeley Trident with the moving map display

A Live Map Display In A 1960s Airliner

We tend take GPS navigation for granted these days, so it’s easy to forget that it became only available in the last few decades. Aviation navigation used to be significantly more challenging, so how was the Hawker Siddeley Trident, a 1960s airliner, fitted with a live updating map display? In a fascinating dive into aviation history the British Airliner Collection has spun up an insightful article on the magic behind these moving map displays.

Without access to satellite navigation or advanced electronics, engineers had to get creative. Enter the Trident’s moving map display, a marvel of ingenuity that predated the GPS systems. Using a combination of Doppler radar and some clever mechanics, pilots could accurately determine their position without relying on any external signals.

The system makes use of four Doppler radar beams, arranged in what was known as the Janus array. This configuration corrected for errors caused by changes in altitude or wind drift, ensuring accurate ground speed readings. The movable antennas mounted under the cabin floor could adjust its orientation to maintain alignment with the actual direction of travel, calculating drift angle precisely. Combined with compass information and flight time from a known start point to to indicate the current position with a pointer on a rolled paper map. The system was well ahead of it’s time, and significantly easier to use and more accurate than the Decca radio navigation system in use at the time.

It’s mind boggling to see the solutions engineers came up with without much of the digital technology we take for granted today. Gyroscopes for inertial navigation, the cavity magnetron for radar and radial engines were all building blocks for modern aviation.

Thanks for the tip [poiuyt]!

Hackaday Links Column Banner

Hackaday Links: January 14, 2024

How long does it take a team of rocket scientists to remove two screws? When the screws they’re working on are keeping a priceless sample of asteroid safe, it’s about three months. That’s how long NASA has been working on the OSIRIS-REx sample return canister, which came back to Earth from asteroid Bennu back in September. The container was crammed full of asteroid bits, thanks in part to an overly energetic impact between the sample-collecting boom and Bennu. There was so much stuff that planetary scientists were able to recover about 70 grams of material that was covering the outside of the sealed container; this must have been a boon to the engineers, who got to figure out how to open the jammed cover of the container without anyone breathing down their necks for samples to study. The problem was a pair of stuck fasteners out of the 35 holding the lid on the container; the solution was far more complicated than a spritz of WD-40 and a little bit of heating with an oxy-acetylene torch. Engineers had to design two “clamp-like tools” and test them on a mock-up to make sure they wouldn’t contaminate the sample. We’d love to know more about these tools; trust us, we’ll be looking into this closely. If we find anything, a full article will be forthcoming.

Continue reading “Hackaday Links: January 14, 2024”

Next-Gen Autopilot Puts A Robot At The Controls

While the concept of automotive “autopilots” are still in their infancy, pretty much any aircraft larger than an ultralight will have some mechanism to at least hold a fixed course and altitude. Typically the autopilot system is built into the airplane’s controls, but this new system replaces the pilot themselves in a manner reminiscent of the movie Airplane.

The robot pilot, known as PIBOT, uses both AI and robotics technology to fly the airplane without altering the aircraft. Unlike a normal autopilot system, this one can be fed the aircraft’s manuals in natural language, understand them, and use that information to fly the airplane. That includes operating any of the aircraft’s cockpit controls, not just the control column and pedal assembly. Supposedly, the autopilot can handle everything from takeoff to landing, and operate capably during heavy turbulence.

The Korea Advanced Institute of Science and Technology (KAIST) research team that built the machine hopes that it will pave the way for more advanced autopilot systems, and although this one has only been tested in simulators so far it shows enormous promise, and even has certain capabilities that go far beyond human pilots’ abilities including the ability to remember a much wider variety of charts. The team also hopes to eventually migrate the technology to the land, especially military vehicles, although we’ve seen how challenging that can be already.

Flying Submarine Documentary Is A Story Of Defied Assumptions

Donald Reid had a passion for applying himself to challenging problems, and in many ways his life’s work was that of developing a prototype submersible aircraft — or flying submarine — for which his son Bruce was a test pilot. [Jesse Moody] brought to our attention a fantastic documentary he created (with a short teaser trailer here) in which he interviews Bruce, and in the process teaches us all about a story that spanned decades and formed an important part of aviation history. Bruce experienced his share of hair-raising moments while testing the craft, but still has all of his fingers and limbs. Still, in his own words, “you wouldn’t be doing that kind of testing today!”

In many ways, the story revolves around defying assumptions. Without context, a “flying submarine” project might sound like a lone kook’s obsession, but Donald Reid was nothing of the sort. He was a brilliant engineer who was able solve problems by applying his skill and intellect with a laser-like focus. And it turns out that getting a submerged vehicle to successfully transition from waterbound craft to airborne is a source of numerous and novel problems that were not trivial to solve. In fact, these problems needed to be solved in order to develop the Tomahawk cruise missile, which is launched by submarine. And that brings us to the lawsuit that bookended it all.

Continue reading “Flying Submarine Documentary Is A Story Of Defied Assumptions”

Protecting The Hughes H4 Hercules With… Beach Balls?

Ryan in the Spruce Goose pilot seat

While visiting the Evergreen Aviation & Space Museum in McMinnville, OR, USA over the weekend, I came across a hack.

In addition to the excellent displays on site and an area where one can watch a video on repeat, the museum offers guided tours for a very reasonable price. And it was during this tour that my life as an aviation geek changed forever. Why? I got to visit the flight deck of the H4 and even sit in the pilots seat where Howard Hughes sat when he flew the plane almost 75 years ago.

It was later in the tour, after I’d had a moment to take in the enormity of sitting in the seat, that I found a wonderful hack to share with you all: and it’s all about beach balls. Continue reading “Protecting The Hughes H4 Hercules With… Beach Balls?”

Airbus A380 Completes Flight Powered By Cooking Oil

Fossil fuels are making news for all the wrong reasons of late. Whether it’s their contribution to global climate change or the fact that the price and supply hinges on violent geopolitics, there are more reasons than ever to shift to cleaner energy sources.

In the world of aviation, that means finding a cleaner source of fuel. A test earlier this year took place in pursuit of that very goal, where an Airbus A380 airliner was flown solely on fuel derived from cooking oil.

Continue reading “Airbus A380 Completes Flight Powered By Cooking Oil”

Fifty Motored Paraglider Partly Flies, Partly Glides

If there’s one thing you can count on [Peter Sripol] for, it’s for defining the the aviation category of “Don’t Try This At Home.” In the video below the break, [Peter] displays his latest terror of the skies: A powered paraglider backpack that has fifty electric motors. Does it fly? Yes. Was it a success? Eh… mostly.

As [Peter] even says in the video: Don’t try this at home. [Peter] has taken a paraglider, which is essentially a non-rigid fabric wing that to the untrained eye resembles a parachute, and powered it with fifty drone motors taken from other projects. Two motors each are mounted in a push/pull configuration inside a 5×5 array of 3d printed ducts.

While the experiment was essentially a success, it was also a failure due to not having enough power, too little battery life, and overall just not being that great. Does every experiment need to end in absolute success in order to have fun and learn lessons that can be applied to the next iteration? Definitely not! We applaud [Peter] for being willing to fail- although, we have to admit, failing is a lot easier when you’ve already got a parachute of sorts deployed!

Looking for some more don’t-try-this-at-home projects to gawk at? Look no further than [Colin Furze] who like [Peter],  has managed to gain his own Hackaday tag.

Continue reading “Fifty Motored Paraglider Partly Flies, Partly Glides”