Gas-Tight FDM 3D Printing Is Within Your Grasp

The widespread availability of inexpensive 3D printers has brought about a revolution in what can be easily made at home. However these creations aren’t perfect, particularly when it comes to the adhesion between their layers. Aside from structural failures along the layer lines there is also the question of those joins being permeable, limiting the possibility for waterproof or gas proof prints. It’s something [German Engineer] has tackled in a new video, in which he’s looking at the design and preparation of small propane tanks.

A blurry image of a red 3d-printed part exploding
This is the frame at which the 3D printed tank explodes

The attraction of propane as a fuel is that it liquefies easily on compression, so a propane cylinder or tank will be an equilibrium of liquid propane with pressurized gas above it, whose pressure depends on the ambient temperature. This means that any tank must be expected to have a working pressure somewhere between 150 and 200 PSI, with of course a design pressure far exceeding that for safety reasons.

Filling a 3D printed tank immediately results in the propane escaping, as he demonstrates by putting one of his prints under water. He solves this with a sealant, Diamant Dichtol, which is intended to polymerize in the gaps between layers and create a gas-tight tank. A range of three tanks of different thicknesses are treated this way, and while the 1 mm thick variety bursts, the thicker ones survive.

It’s clear that this technique successfully creates gas-tight prints, and we can see the attraction of a small and lightweight fuel tank. But we can’t help worrying slightly about the safety, for even when the material is a lightweight 3D print, high pressure equipment is not to be trifled with. Tanks do burst, and when that happens anyone unfortunate enough to be close by sustains nasty, even life-threatening injuries. Use the technique, but maybe don’t hit it with high pressures.

Continue reading “Gas-Tight FDM 3D Printing Is Within Your Grasp”

Ask Hackaday: Whatever Happened To Wire Wrapping?

Back in the 70s when I started getting interested in electronics, tons of magazines catered to the hobbyist market. Popular Electronics was my favorite, and I think I remember the advertisements more than anything, probably because they outnumbered articles by a large margin. Looking back, it seemed like a lot of ad space was sold to companies hawking the tools and materials needed for wire wrapping, which was very popular for prototyping in the days before solderless breadboards were readily available. I remember beauty shots of neat rows of small, gold posts, with stripped wires wrapped evenly around them.

To the budding hobbyist, wire wrapping looked like the skill to have. With a huge selection of posts, terminals, and sockets for ICs and discrete components, as well as a wide range of manual and powered wrapping tools, it seemed like you could build anything with wire wrapping. But fast forward just a decade or so, and wire wrapping seemed to drop out of favor. And today — well, does anyone even wire wrap anymore?

Continue reading “Ask Hackaday: Whatever Happened To Wire Wrapping?”

Punching It Down: Insulation Displacement Connectors

In my misspent youth I found myself doing clinical rotations at a local hospital. My fellow students and I were the lowest of the low on the hospital pecking order, being the ones doing the bulk of the work in the department and paying for the privilege to do so. As such, our locker facilities were somewhat subpar: a corner of a closet behind a door labeled “COMMS”.

In the room was a broken chair and a couple of hooks on the wall for our coats, along with an intriguing (to me) electrical panel. It had a series of rectangular blocks with pins projecting from it. Each block had a thick cable with many pairs of thin, colorful wires fanned out and neatly connected to the left side, and a rats nest of blue and white wires along the right side. We were told not to touch the board. I touched it nonetheless.

I would later learn that these were Type 66 punchdown blocks for the department’s phone system, and I’d end up using quite a few of them over my hacking life. Punchdown connectors were a staple of both private and public telco physical plants for decades, and belong to a class of electrical connections called insulation displacement connections, or IDC. We’ve recently looked at how crimp connections work, and what exactly is going on inside a solder joint. I thought it might be nice to round things out with a little bit about the workings of IDC.

Continue reading “Punching It Down: Insulation Displacement Connectors”