Two colored plastic films are loosely tied over the entrances to two plastic containers.

Cooking Up Plastics In The Kitchen

The earliest useful plastics were made out of natural materials like cellulose and casein, but since the Bakelite revolution, their use has dwindled away and left them mostly as curiosities and children’s science experiments. Fortunately, though, the raw materials for bioplastics are readily available in most grocery stores, and as [Ben] from NightHawkInLight demonstrates, it’s still possible to find new uses for them.

His first recipe was for a clear gelatine thermoplastic, using honey as a plasticizer, which he formed into the clear packet around some instant noodles: simply throw the whole packet into hot water, and the plastic dissolves away. With some help from the home bioplastics investigator [Giestas], [Ben] next created a starch-based plastic out of starch, vinegar, and glycerine. Starch is a good infrared emitter in the atmospheric window, and researchers have made a starch-plastic aerogel that radiates enough heat to become cooler than its surroundings. Unfortunately, this requires freeze-drying, and while encouraging freezer burn in a normal freezer can have the same effect, it’ll take a few months to get a usable quantity of the material.

The other problem with starch-based plastics is their tendency to absorb water, at least when paired with plasticizers like glycerine or honey. Bioplastics based on alginate, however, are easy to make waterproof. A solution of sodium alginate, derived from seaweed, reacts with calcium ions to make a cross-linked waterproof film. Unfortunately, the film forms so quickly that it separates the solutions of calcium ions from the alginate, and the reaction stops. To get around this, [Ben] mixed a sodium alginate solution with powdered calcium carbonate, which is insoluble and therefore won’t react. To make the plastic set, he added glucono delta lactone, which slowly breaks down in water to release gluconic acid, which dissolves the calcium carbonate and lets the reaction proceed.

The soluble noodle package reminded us of a similar edible package, which included flavoring in the plastic. We’ve also seen alginate used to make conductive string, and rice used to make 3D printer filament. It’s worth some caution, though – not all biologically-derived plastics are healthier than synthetic materials.

Continue reading “Cooking Up Plastics In The Kitchen”

Tired With Your Robot? Why Not Eat It?

Have you ever tired of playing with your latest robot invention and wished you could just eat it? Well, that’s exactly what a team of researchers is investigating. There is a fully funded research initiative (not an April Fools’ joke, as far as we know) delving into the possibilities of edible electronics and mechanical systems used in robotics. The team, led by EPFL in Switzerland, combines food process engineering, printed and molecular electronics, and soft robotics to create fully functional and practical robots that can be consumed at the end of their lifespan. While the concept of food-based robots may seem unusual, the potential applications in medicine and reducing waste during food delivery are significant driving factors behind this idea.

The Robofood project (some articles are paywalled!) has clearly made some inroads into the many components needed. Take, for example, batteries. Normally, ingesting a battery would result in a trip to the emergency room, but an edible battery can be made from an anode of riboflavin (found in almonds and egg whites) and a cathode of quercetin, as we covered a while ago. The team proposed another battery using activated charcoal (AC) electrodes on a gelatin substrate. Water is split into its constituent oxygen and hydrogen by applying a voltage to the structure. These gasses adsorb into the AC surface and later recombine back into the water, providing a usable one-volt output for ten minutes with a similar charge time. This simple structure is reusable and, once expired, dissolves harmlessly in (simulated) gastric fluid in twenty minutes. Such a device could potentially power a GI-tract exploratory robot or other sensor devices.

But what use is power without control? (as some car tyre advert once said) Microfluidic control circuits can be created using a stack of edible materials, primarily oleogels, like ethyl cellulose, mixed with an organic oil such as olive oil. A microfluidic NOT gate combines a pressure-controlled switch with a fluid resistor as the ‘pull-up’. The switch has a horizontal flow channel with a blockage that is cleared when a control pressure is applied. As every electronic engineer knows, once you have a controlled switch and a resistor, you can build NOT gates and all the other logic functions, flip-flops, and memories. Although they are very slow, the control components are importantly edible.

Edible electronics don’t feature here often, but we did dig up this simple edible chocolate bunny that screams when you bite it. Who wouldn’t want one of those?