A black plastic trim piece from a vehicle interior. It has slight flecking in its texture. It is sitting on an off-white bench overlooking a workshop.

Can Car Parts Grow On Trees?

Cars don’t grow on trees, but Ford is designing car parts from olive tree cuttings. [via Electrek]

Ford is no stranger to designing parts from plants for their vehicles. Henry famously liked to beat on the Soy Bean Car with a blunted axe to tout the benefits of bioplastic panels. Researchers at Ford’s Cologne, Germany facility have detailed their work to use waste from olive orchards as part of a new biocomposite from the LIVE COMPOLIVE program.

Fibers from the olive tree cuttings are mixed with recycled plastic and injection molded to form panels. The video below features interior panels that are currently made with traditional plastics that could be swapped over to the new composite. Since these cuttings are a waste product from food production, there isn’t the tension akin to that presented via biofuels vs food. We’re curious what Precious Plastics could do with this, especially if the fibers are able to reinforce the matrix.

If you want to see some other unusual uses for waste wood, why not checkout a “paper” bottle or 3D printing with sawdust?

Continue reading “Can Car Parts Grow On Trees?”

3D Printing With Rice Might Be Nice

The United Nations Industrial Development Organization recently pointed out a possible replacement for petrochemical-based polymers: rice resin. A Japanese company makes the material from inedible rice and also makes a biodegradable polymer known as Neoryza, which seems to contain some amount of rice as well. The rice resin contains 10 to 70% rice waste. You can see a video with English subtitles about the material below.

According to the video, there is plenty of waste rice. The resulting resin isn’t as toxic as petrochemical-based plastics and doesn’t consume food crops like other plant-based polymers. The video shows the rice resin being extruded like a normal polymer, so it should work like any other thermoplastic.

The video says the properties are similar to petrochemical-based plastics and no special equipment is required to handle it. They also claim that production is easier because, unlike other bioplastics, they don’t generate ethanol as the first part of the process. Waste rice should be cheap to obtain since it is essentially trash today. We aren’t sure what polymers are used in the 90 to 30% of the plastic that isn’t rice, but presumably, that is being brought in as a raw material.

We’ll be interested to see if anyone tries to make 3D printing filament from the stuff. We know that it is being used to replace polyethylene in furniture. We couldn’t help but think about using waste coffee grounds in 3D printing. If you want to compare this to PLA, we’ve talked quite a bit about the corny polymer.

Continue reading “3D Printing With Rice Might Be Nice”

PLA: The Plastic That Grows

If you’ve ever taken a coast-to-coast car trip across the United States, the one thing that’s sure to impress you is the mind-bogglingly immense amount of corn that we grow here. If you take the northern route — I’ve done it seven times, so I know it by heart — you’ll see almost nothing but corn from Ohio to Montana. The size of the fields is simply staggering, and you’re left wondering, “Do we really eat all this corn?”

The simple answer is no, we don’t. We grow way more corn than we can eat or, once turned into alcohol, drink. We do feed a lot to animals, many of which subsequently end up as burgers or pork chops. But even after all that, and after accounting for exports, we still have a heck of a lot of corn to put to work. There are lots of industrial uses for this surplus corn, though, and chances are pretty good you’ve got an ear or two worth coiled up next to your 3D-printer, in the form of polylactic acid, or PLA.

Continue reading “PLA: The Plastic That Grows”

They’re Putting Soy In Your Wires, Man

I’ve got a friend who tells me at every opportunity that soy is the downfall of humanity. Whatever ails us as a society, it’s the soy beans that did it. They increase violent tendencies, they make us fat and lazy, they run farmers out of business, and so on. He laments at how hard it is to find food that doesn’t include soy in some capacity, and for a while was resigned to eating nothing but chicken hot dogs and bags of frozen peas; anything else had unacceptable levels of the “Devil’s Bean”. Overall he’s a really great guy, kind of person who could fix anything with a roll of duct tape and a trip to the scrap pile, but you might think twice if he invites you over for dinner.

A column of soy soldiers stand at the ready.

So when he recently told me about all the trouble people are having with soy-based electrical wiring, I thought it was just the latest conspiracy theory to join his usual stories. I told him it didn’t make any sense, there’s no way somebody managed to develop a reliable soy-derived conductor. “No, no,” he says, “not the conductor. They are making the insulation out of soy, and animals are chewing through it.”

Now that’s a bit different. I was already well aware of the growing popularity of bioplastics: the PLA used in desktop 3D printers is one such example, generally derived from corn. It certainly wasn’t unreasonable to think somebody had tried to make “green” electrical wiring by using a bioplastic insulation. While I wasn’t about to sit down to a hot bag of peas for dinner, I had to admit that maybe in this case his claims deserved a look.

Continue reading “They’re Putting Soy In Your Wires, Man”