Swimming Pool Lap Counter Relies On Ultrasound

Swimming is a great way to exercise, both for the cardiovascular benefits and the improved muscle tone. However, while he’s a fan, [Peter Quinn] sometimes finds it hard to keep track of how far he’s gone when he gets in the zone. Obviously, the solution is an electronic lap counter, which [Peter] promptly set about creating.

The build is based around an ultrasonic distance sensor, which is triggered when it detects a swimmer approaching the end of the lane. It’s run by an Arduino Nano, which is also set up to announce the accumulated distance with a speech synth library. [Peter] notes there have been some stumbling blocks thus far, necessitating modifications along the way. Water ingress into the ultrasonic sensor has required the installation of a protective shroud, while battery operation has required a module to properly handle the lithium-polymer battery.

While we might hesitate to bring a takeaway container full of wires, circuit boards and an LED display to a public pool for fear of being deemed a bomber, the basic bones of the project are a great way to approach the problem. There’s plenty of scope to implement laptiming too, as we’ve seen in other sporting builds!

Reflective Sensor Becomes Kart Racing Lap Counter

Once you have a track and a kart to race on it, what’s missing? A lap counter that can give your lap times in hardcopy, obviously! That’s what led [the_anykey] to create the Arduino-based Lap Timer to help him and his kids trim those precious seconds off their runs, complete with thermal printer for the results.

The hardware uses an infrared break-beam sensor module (a Velleman PEM10D) to detect when a kart passes by. This module is similar to a scaled-up IR reflective object sensor; it combines an IR emitter and receiver on one end, and is pointed at a reflector placed across the track, up to 10 meters away. When a kart breaks the beam, the module reports the event to the rest of the hardware. Only needing electronics on one side allows the unit to be self-contained.

An obvious shortcoming of this system is the inability to differentiate between multiple karts, but for timing a single driver’s performance it does the trick. What’s great about this project is it showcases how accessible hardware is today; a device like this is possible to put together with what are essentially off-the-shelf components available to any hobbyist, using an Arduino as the glue to hold it together. We’d only comment that a red-tinted piece of plastic as an overlay for the red display (and a grey-tinted one for the green) would make the LED displays much easier to read. Still, this is a very clean and well-documented build. See it in action in the video embedded below.

Continue reading “Reflective Sensor Becomes Kart Racing Lap Counter”