The ’80s Multi-Processor System That Never Was

Until the early 2000s, the computer processors available on the market were essentially all single-core chips. There were some niche layouts that used multiple processors on the same board for improved parallel operation, and it wasn’t until the POWER4 processor from IBM in 2001 and later things like the AMD Opteron and Intel Pentium D that we got multi-core processors. If things had gone just slightly differently with this experimental platform, though, we might have had multi-processor systems available for general use as early as the 80s instead of two decades later.

The team behind this chip were from the University of Califorina, Berkeley, a place known for such other innovations as RAID, BSD, SPICE, and some of the first RISC processors. This processor architecture would be based on RISC as well, and would be known as Symbolic Processing Using RISC. It was specially designed to integrate with the Lisp programming language but its major feature was a set of parallel processors with a common bus that allowed for parallel operations to be computed at a much greater speed than comparable systems at the time. The use of RISC also allowed a smaller group to develop something like this, and although more instructions need to be executed they can often be done faster than other architectures.

The linked article from [Babbage] goes into much more detail about the architecture of the system as well as some of the things about UC Berkeley that made projects like this possible in the first place. It’s a fantastic deep-dive into a piece of somewhat obscure computing history that, had it been more commercially viable, could have changed the course of computing. Berkeley RISC did go on to have major impacts in other areas of computing and was a significant influence on the SPARC system as well.

Breadboarding With A 144-core Processor

At the center of that green PCB is a tiny little processor with way too many cores. It’s the GA144 which was taken for a test-drive on a breadboard by [Andrew Back]. We saw a multi-core Kickstarter project last month. This will cost a lot less and get you more than twice the number of cores. But as was mentioned in the comments on that post, the drawback is the programming language. This chip’s IDE uses Forth.

There is a dev board available, but [Andrew] went instead with a QFN-to-Through-Hole adapter board which he hand soldered. Once he has access to the pins the chip can be programmed with an FTDI adapter which is compatible with the 1.8V logic levels. The provided Forth IDE (arrayForth) is a Windows only program but it does run under Wine. We followed the project through to see him twiddling I/O pins. But we still have trouble thinking of applications for it. In a world of complex and inexpensive FPGA chips, what would you use this type of processor for?

Massively Parallel Computer Costs $99

Even though dual, quad, and octo-core CPUs have been around for a while, it’s a far cry from truly massive parallel computing platforms. The chip manufacturer Adapteva is looking to put dozens of CPUs in a small package with their Parallella project. As a bonus, they’re looking for funding on Kickstarter, and plan to open source their 16 and 64-core CPUs after funding is complete.

The Parallella computer is based on the ARM architecture, and will be able to run Ubuntu with 1 Gig of RAM, a dual-core ARM A9 CPU, Ethernet, USB, and HDMI output. What makes the Parallella special is it’s Epiphany Multicore Accelerator – a coprocessor containing up to 64 parallel cores.

Adapteva is turning to Kickstarter for their Parallella computer to get the funding to take their Epiphany multicore daughterboard and shrink it down into a single chip. Once that’s complete, Adapteva will start shipping an ARM-powered Linux supercomputer that’s about the size of a credit card, or a Raspberry Pi under the new system of dev board measurements.

With any luck, the Parallella multicore computer will be available for $99, much less than a comparable x86 multicore computer. It’ll certainly be interesting to see what the Parallella can do in the future.