Quasi-Quantifying Qubits For 100 Quid

As part of his multi-year project to build a quantum computer, hacakday.io poster [skywo1f] has shared with us his most recent accomplishment — a Nuclear Magnetic Resonance Spectrometer, which he built for less than $100.

The NMR spectrometer is designed to disturb protons, which naturally line up according to the Earth’s magnetic field, using an electric coil. Once disturbed, the protons nutate (a fancy physics word for wobble), and flip quantum spin states. [skywo1f]’s NMR device can detect these spin state changes, as he demonstrates with a series of control experiments designed to eliminate sources of false positives (which can be annoyingly prevalent in experimental physics). His newest experimental device includes a number of improvements over previous iterations, including proper shielding, quieter power topology, and better coil winding in the core of the device. Everything was assembled with cost in mind, while remaining sensitive enough to conduct experiments — the whole thing is even driven by a Raspberry Pi Pico.

Here at Hackaday, we love to see experiments that should be happening in million-dollar laboratories chugging along on kitchen tables, like this magnetohydrodynamic drive system or some good old-fashioned PCB etching. [skywo1f] doesn’t seem to be running any quantum calculations yet, but the NMR device is an important building block in one flavor of quantum computer, so we’re excited to see where he takes his work next.

Getting Into NMR Without The Superconducting Magnet

Exploring the mysteries of quantum mechanics surely seems like an endeavor that requires room-sized equipment and racks of electronics, along with large buckets of grant money, to accomplish. And while that’s generally true, there’s quite a lot that can be accomplished on a considerably more modest budget, as this as-simple-as-it-gets nuclear magnetic resonance spectroscope amply demonstrates.

First things first: Does the “magnetic resonance” part of “NMR” bear any relationship to magnetic resonance imaging? Indeed it does, as the technique of lining up nuclei in a magnetic field, perturbing them with an electromagnetic field, and receiving the resultant RF signals as the nuclei snap back to their original spin state lies at the heart of both. And while MRI scanners and the large NMR spectrometers used in analytical chemistry labs both use extremely powerful magnetic fields, [Andy Nicol] shows us that even the Earth’s magnetic field can be used for NMR.

[Andy]’s NMR setup couldn’t be simpler. It consists of a coil of enameled copper wire wound on a 40 mm PVC tube and a simple control box with nothing more than a switch and a couple of capacitors. The only fancy bit is a USB audio interface, which is used to amplify and digitize the 2-kHz-ish signal generated by hydrogen atoms when they precess in Earth’s extremely weak magnetic field. A tripod stripped of all ferrous metal parts is also handy, as this setup needs to be outdoors where interfering magnetic fields can be minimized. In use, the coil is charged with a LiPo battery for about 10 seconds before being rapidly switched to the input of the USB amp. The resulting resonance signal is visualized using the waterfall display on SDR#.

[Andy] includes a lot of helpful tips in his excellent write-up, like tuning the coil with capacitors, minimizing noise, and estimating the exact resonance frequency expected based on the strength of the local magnetic field. It’s a great project and a good explanation of how NMR works. And it’s nowhere near as loud as an MRI scanner.