Tapping into a Ham Radio’s Potential with SDRPlay

Software-defined radios are great tools for the amateur radio operator, allowing visualization of large swaths of spectrum and letting hams quickly home in on faint signals with the click of a mouse. High-end ham radios often have this function built in, but by tapping into the RF stage of a transceiver with an SDR, even budget-conscious hams can enjoy high-end features.

With both a rugged and reliable Yaesu FT-450D and the versatile SDRPlay in his shack, UK ham [Dave (G7IYK)] looked for the best way to link the two devices. Using two separate antennas was possible but inelegant, and switching the RF path between the two devices seemed clumsy. So he settled on tapping into the RF stage of the transceiver with a high-impedance low-noise amplifier (LNA) and feeding the output to the SDRPlay. The simple LNA was built on a milled PCB. A little sleuthing with the Yaesu manual — ham radio gear almost always includes schematics — led him to the right tap point in the RF path, just before the bandpass filter network. This lets the SDRPlay see the signal before the IF stage. He also identified likely points to source power for the LNA only when the radio is not transmitting. With the LNA inside the radio and the SDRPlay outside, he now has a waterfall display and thanks to Omni-Rig remote control software, he can tune the Yaesu at the click of a mouse.

If you need to learn more about SDRPlay, [Al Williams]’ guide to GNU Radio and SDRPlay is a great place to start.

Continue reading “Tapping into a Ham Radio’s Potential with SDRPlay”

Spectrum Painting on 2.4 GHz

Give a software-defined radio (SDR) platform to a few thousand geeks, and it’s pretty predictable what will happen: hackers gotta hack. We’re only surprised that it’s happening so soon. Spectrum Painter is one of the first cool hacks to come out of the rad1o badge given out at the CCCamp 2015. It makes it dead-simple to send images in Hellschreiber mode on a few different SDR hardware platforms.

What we especially like about the project is its simplicity. Don’t get us wrong, we’re tremendous fans of GNURadio and the GNURadio Companion software radio hacking environment. But if you just want to do something simple, like send a picture of a smiley-face, the all-capable GNURadio suite is overkill.

Continue reading “Spectrum Painting on 2.4 GHz”

Waterfall Swing Set

[Doped Boron] wrote in to tell us about this waterfall swing by [Dash 7]. Naturally, we had no idea what a “waterfall swing” was. Shown at the World Maker Faire in 2011, the device is a swing set capable of accommodating one or two people using it at a time. What makes it interesting, is that water comes out of the top support bar, forming a wall of water for the riders to pass through. This wall is then broken when the swing user flies through it making for a dry experience.

According to the article, 273 solenoid valves are used to control the wall of water. These solenoids are controlled by a computer with sensors that detect where the riders are in the air and what speed they are going. As with most good hacks, it may not serve a “grown-up” purpose, but a set would definitely make a trip to the park more interesting!

Be sure to check out the videos after the break. The first shows the swing in its traditional role, but the second may be even more interesting, showing full control of the swing solenoids for water writing! Continue reading “Waterfall Swing Set”

Waterfall signal visualizer from Arduino and cellphone LCD

[Leigh] is a HAM operator (you may know him as wa5znu). He is familiar with a signal visualization tool called a waterfall which plots signal strength and frequency over time. He wanted to build his own waterfall and ended up with this Arduino-based version which he calls Cascata. Cascata means waterfall in Italian which meshes nicely with Arduino’s country of origin

The display he chose is a Nokia LCD shield from SparkFun. It’s easy to plug in and there were already libraries available to drive the display. The audio input just connects to a headphone plug (you can just make it out at the bottom right in the image above) using some electrical tape. A free-formed resistor divider ensures that the signal is within a measurable range. [Leigh] found that signal noise was a bit of a problem but was able to improve his results by adding a capacitor to the Arduino headers between the VREF and GND pins.

See it in action after the break.

Continue reading “Waterfall signal visualizer from Arduino and cellphone LCD”