More CRT Fun With The Scope Clock

That’s a sexy way to use parts from an old oscilloscope. [Aaron] took his inspiration from another project that was using CRTs from old oscilloscopes. Now he’s giving back with a site dedicated to sharing information about the Scope Clock. This project is along the same lines as the one we saw a few days ago.

The image above shows his first build in its new home in Hong Kong. The clock is housed in two clear acrylic containers, paired through a surprisingly beefy military grade connector. You can see the journey that it took to get to this polished finish by going to the Prototype tab at the top of the page linked above. One of the images shows some fast captures of the screen redraw. It lets you see the vectors which are being traced on the phosphor screen by the electron gun. This gives an image that we think is far more pleasing than the row scanning of a traditional CRT monitor.

Of course you don’t have a to start from scratch either. Here’s a clock project that just augments a functional CRT scope.

Giving The Rigol DS1052E ‘scope A Spectrum Analyzer

Like a lot of hardware tinkerers, [dexter2048] has a Rigol DS1052E oscilloscope sitting on his bench. One day when trying to coax some information out of the FFT setting, [dexter] threw his hands up in frustration and decided to write a file viewer with FFT spectrum analysis. The resulting viewer gives this very capable and inexpensive oscilloscope a spectrum analyzer.

[dexter2048]’s app is able to capture signals from 0 Hz to 500 MHz and demonstrated this fact by sticking a piece of wire into one of the Rigol’s inputs. The resulting waveform is then sent to a computer where [dexter] got a nice picture of the radio spectrum between 82MHz and 114MHz. In his graph, you can clearly see the FM radio stations that can be picked up in [dexter]’s lab.

This small modification to the Rigol DS1052E oscilloscope it the latest in a long line of hacks that give this wonderful, inexpensive scope double the bandwidth, data collection via Python, and even a homebrew version of Pong. Anything that provides new functionality for old gear is great news to us, and we look forward to many, many more 1052E hacks in the future.

Tip ‘o the hat to [Murlidhar] for sending this in.

Oscilloscope VFD Repair Like Doing Brain Surgery On Yourself

[Jerry Pommer] has an old Tektronix 2236 that is having some issues. Just to the right of the top corner of the screen is a VFD display that is used to show various numerical measurements. Unfortunately this has stopped working, so he made the oscilloscope probe itself in order to trouble-shoot the situation.

The entire repair process was filmed and you can see the 42-minute job embedded after the break. There’s a lot of stuff crammed inside that oscilloscope, and we see a tour of it all at the beginning of the video. Once [Jerry] gets down to business he traces the problem to a JK Flip-Flop used to feed the display. The output appears correct at first, but the clock signal is not functioning as expected. His solution is to use an MSP430 chip to replace the Flip-Flop functions.

The confidence to try this repair was sparked by [Todd Harrington’s] car-stereo VFD repair video.

Continue reading “Oscilloscope VFD Repair Like Doing Brain Surgery On Yourself”

Tiny OLED O-scope Fits On A Breadboard

[youtube=http://www.youtube.com/watch?v=UfAkdd9kXNY&w=470]

With a surplus of 3D printers at this year’s Maker Faire, it’s really surprising to see the most talked about tool among the makers is a simple oscilloscope.

[Gabriel Anzziani]’s Xprotolab is an extremely small oscilloscope, function generator, logic analyzer, and general 128×64 OLED display is the perfect addition to your next prototyping project. With its breadboard friendly format and USB output, it will dutifully serve as a 200kbps oscilloscope, 8 channel logic analyzer, or as seen in the video above, the perfect interface for a Wii Nunchuck or just a simple digital Etch-a-sketch.

In the video above the fold [Gabriel] shows off the functions of his tiny, if somewhat limited, OLED oscilloscope.

Scratch-built RFID Reader

We never bought an RFID reader because it seems too simple to be all that much fun. But [Abdullah] really caught our eye with his latest project. It’s an RFID reader built from discrete parts, and that’s an adventure we can get behind!

His write-up dives right into the theory of the device. He wrapped his own coil, which measure about one microhenry, then shares an equation used to calculate the appropriate capacitor pair for it. This is fed by a 125 kHz oscillator and works as the most basic reader. In practice this needs more components for rock-solid operation and he quickly moves to a marginally more complicated circuit which still does exactly the same thing.

He is now able to detect RFID tag data by reading this circuit with an oscilloscope. But the signal is very very weak. The rest of the post focuses on how to best utilize an OpAmp to increase signal quality and on/off time.

If you’re looking to recreate his reader [Abdullah] included a Kicad schematic and board layout.

EMF Oscilloscope Probe

[Tuomas Nylund] wanted a way to visualize the electromagnetic fields (EMF) around him. He figured the oscilloscope was the tool best suited for the task, but he needed a way to pick up the fields and feed them into one of the scope’s probes. He ended up building this EFM probe dongle to accomplish the task.

He admits that this isn’t much more than just an inductor connected to the probe and should not be used for serious measurements. But we think he’s selling himself short. It may not be what he considers precision, but the amplification circuit and filtering components he rolled into the device appear to provide very reliable input signals. We also appreciate the use of a BNC connector for easy interface. Check out the demo video after the break to see the EMF coming off of a soldering station controller, from a scanning LCD screen, and that of a switch-mode power supply.

Continue reading “EMF Oscilloscope Probe”

Android Oscilloscope Built From Parts Just Lying Around

So you need to debug a circuit and you don’t have an oscilloscope. That’s not a problem thanks to [retronics] $0 Android oscilloscope, made with parts he just happened to have lying around.

The heart of every modern oscilloscope is the ADC – the chip that takes analog input and outputs a digital signal. Every Android device has one of these converters connected to the microphone port. All [retronics] needed to do was solder up a 3mm headphone jack, wire in a few resistors, and attach a pair of alligator clips. After installing an oscilloscope app, [retronics] had a half decent ‘scope.

Yes, this is truly a poor man’s oscilloscope, and [retronics] probably won’t be debugging high frequency RF circuits with his Android microphone jack anytime soon. Low frequency stuff such as audio is where this ‘scope really excels; even more so if a small preamp is thrown into the mix.

You can check out [retronics]’ build after the break. Sure, it’s not something for precise and calibrated measurement, but sometimes you only need a tool that will do the job.

Continue reading “Android Oscilloscope Built From Parts Just Lying Around”