NEO430 Puts A Custom MSP430 Core In Your FPGA

We are certainly spoiled by all the microcontroller options nowadays — which is a great problem to have. But between the good old 8-bit controllers and an increasing number of 32-bit varieties, it almost seems as if the 16-bit ones are slowly falling into oblivion. [stnolting] particularly saw an issue with the lack of 16-bit open source soft cores, and as a result created the NEO430, an MSP430 compatible soft processor written in VHDL that adds a custom microcontroller to your next FPGA project.

With high customization as main principle in mind, [stnolting] included a wide selection of peripherals and system features that can be synthesized as needed. Not limiting himself to the ones you would find in an off-the-shelf MSP430 controller, he demonstrates the true strength of open source soft cores. Do you need a random number generator, CRC calculation, and an SPI master with six dedicated chip select lines? No problem! He even includes a Custom Functions Unit that lets you add your own peripheral feature or processor extension.

However, what impresses most is all the work and care [stnolting] put into everything beyond the core implementation. From the C library and the collection of examples for each of the controller’s features, so you can get started out of the box with GCC’s MSP430 port, to writing a full-blown data sheet, and even setting up continuous integration for the entire repository. Each topic on its own is worth looking at, and the NEO430 offers a great introduction or reference for it.

Of course, there are some shortcomings as well, and the biggest downer is probably the lack of analog components, but that’s understandable considering your average FPGA’s building blocks. And well, it’s hard to compete with the MSP430’s ultra low-power design using an FPGA, so if you’re thinking of replicating this watch, you might be better off with a regular MSP430 from a battery lifetime point of view.

Steampunk Water Thief Clock Steals Attention, Too

The funny thing about clocks is that the more intriguing they are to look at, the more precious time is wasted. This steampunk clepsydra is no exception. A clepsydra, or water thief clock is an ancient design that takes many forms. Any clock that uses the inflow or outflow of water to measure time could be considered a clepsydra, even if it uses electronics like this steampunk version.

[DickB1]’s sticky-fingered timepiece works by siphoning water from the lower chamber into the upper chamber on a one-minute cycle. An MSP430 and a MOSFET control the 12 V diaphragm pump. As the water level rises in the upper chamber, a float in the siphon pushes a lever that moves a ratchet and pawl that’s connected to the minute hand. The hour hand is driven by gears. A hidden magnet and Hall effect sensor help keep the clock clicking at one-minute intervals.

Although [DickB1] doesn’t tell you exactly how to replicate this clock, he offers enough information to get started in designing your own. Take a second to check it out after the break.

Most of the thieving around here is done for the joules, so here’s a joule thief running a clock.

Continue reading “Steampunk Water Thief Clock Steals Attention, Too”

Returning Digital Watches To The Analog Age: Enter The Charliewatch

The Charliewatch by [Trammell Hudson] is one of those projects which is beautiful in both design and simplicity. After seeing [Travis Goodspeed]’s GoodWatch21 digital watch project based around a Texas Instruments MSP430-based SoC, [Trammell] decided that it’d be neat if it was more analog. This is accomplished using the CC430F5137IRGZR (a simpler member of the MSP430 family) and a whole bunch of 0603 SMD LEDs which are driven using Charlieplexing.

This time-honored method of using very few I/O pins to control many LEDs makes it possible to control 72 LEDs without dedicating 72 pins. The density makes animations look stunning and the digital nature melts away leaving a distinct analog charm.

A traditional sapphire crystal was sourced from a watchmaker for around 14€ as was the watch band itself. The rest is original work, with multiple iterations of the 3D printed case settling in on a perfect fit of the crystal, PCB, and CR2032 coin cell stackup. The watch band itself hold the components securely in the housing, and timekeeping is handled by a 32.768 kHz clock crystal and the microcontroller’s RTC peripheral.

The LEDs can be seen in both daylight and darkness. The nature of Charlieplexing means that only a few of the LEDs are ever illuminated at the same time, which does wonders for battery life. [Trammell] tells us that it can run for around six months before the coin cell needs replacing.

It’s completely open source, with project files available on the project’s Github page. We hope to see an army of these watches making appearances at all upcoming electronics-oriented events. Just make sure you lay off the caffeine as the process of hand-placing all those LEDs looks daunting.

Shmoocon: Advanced Low Power Techniques And A Watch

Real quick question: how do you increase productivity at work? The greatest (highest paid) minds would just say: do agile or scrum or something. What’s scrum? That’s where you gather ’round every morning for a waste of time meeting that kills your every desire to be productive. A while back, [Travis Goodspeed] was stuck in some lesser circle of hell like this and in an effort to be polite by not looking at his phone too much, looked at his watch too much. This led to the creation of the Goodwatch, a new bit of hardware that replaces the guts of a Casio calculator watch with a hex editor, ISM-band radio, MSP430 disassembler, and of course an RPN calculator.

[Travis] has already introduced the GoodWatch to the world. We took a look back in December but haven’t heard anything since. His talk at Shmoocon 2018 put a little more light on how this project came to be.

Continue reading “Shmoocon: Advanced Low Power Techniques And A Watch”

Hackaday Links: Not A Creature Was Stirring, Except For A Trackball

Hey, did you know Hackaday is starting an Open Access, peer-reviewed journal? The Hackaday Journal of What You Don’t Know (HJWYDK) is looking for submissions detailing the tools, techniques, and skills that we don’t know, but should. Want to teach everyone how to make sand think? Write a paper and tell us about it! Send in your submissions here.

Have you noticed OSH Park updated their website?

The MSP430 line of microcontrollers are super cool, low power, and cheap. Occasionally, TI pumps out a few MSP430 dev boards and sells them for the rock-bottom price of $4.30. Here ya go, fam. This one is loaded up with the MSP430FR2433.

lol, Bitcoin this week.

Noisebridge, the San Francisco hackerspace and one of the first hackerspaces in the US, is now looking for a new place. Why, you may ask? Because San Francisco real estate. The current price per square foot is triple what their current lease provides. While we hope Noisebridge will find a new home, we’re really looking forward to the hipster restaurant that’s only open for brunch that will take its place.

The coolest soundcards, filled with DOS blips and bloops, were based on the OPL2 and OPL3 sound chips. If you want one of these things, you’re probably going to be digging up an old ISA SoundBlaster soundcard. The OPL2LPT is the classic sound card for computers that don’t have an easily-accessible ISA bus, like those cool vintage laptops. The 8-Bit Guy recently took a look at this at this neat piece of hardware, and apart from requiring a driver to work with any OPL2-compatible game, this thing actually works.

NVIDIA just did something amazing. They created a piece of hardware that everyone wants but isn’t used to turn electricity into heat and Bitcoin. This fantastic device, that is completely original and not at all derivative, is sold in the NVIDIA company store for under five dollars. Actually, the green logo silk/art on this PCB ruler is kinda cool, and I’d like to know how they did that. Also, and completely unrelated: does anyone want ten pounds of Digikey PCB rulers?

Joule Thief Steals In Favor Of Christmas

A lot of things tend to get stretched during the holiday season, like shopping budgets and waistbands and patience. This year, [Chris] is stretching the limits of both the mini breadboard and the humble 1.5 V LR44 coin cell with his joule thief-driven LED mini Christmas tree.

With the push of a micro momentary, the joule thief circuit squeezes enough power from an LR44 to boot an MSP430 microcontroller, which needs 1.8 V – 3.6 V. After boot, the micro takes control of the joule thief circuit and milks it whenever the voltage falls below 3.2 V. This tree may be small in stature, but it’s feature-rich. A push of the same momentary button cycles through four different light shows, ending with a medley of all four. Be dazzled after the break.

The code for this tiny tree, which features an awesome ASCII breadboard layout and schematic, is up on GitHub. [Chris] has it listed among a few other manageable bare-metal ‘430 projects that would be great for beginners at pure C. If that sounds like you, why not give yourself the gift of learning a new language?

We’ve seen some spirited ways of lighting LEDs, but doing it with candle power takes the fruitcake.

Continue reading “Joule Thief Steals In Favor Of Christmas”

Build Your Own Digital Panel Meter

A popular purchase from the usual stockists of imported electronic modules is a digital panel meter. A very small amount of money secures a module with a seven-segment display that you can stick on the front of your power supply or project for an easy readout. Even before the advent of these ultra-cheap Chinese products there have been readily available digital meters, in a line stretching back to the 1970s with chips such as the Intersil 7106.

[Marcus Taciuc] is eschewing the off-the-shelf parts, and creating his own digital panel meter. He’s using an MSP430 microprocessor as the brain of his device, and a Hitachi HD44780 compatible LCD display at the front end. The appropriate combinations of resistors and op-amps feeding the MSP’s ADC inputs allow his meter to be used to measure up to 40 VDV, and up to 10A.

He’s put up a video which we’ve included below the break, showing the use to which this meter has been put: replacing the moving-coil meter in what looks like a classic piece of Heathkit equipment. A 3D printed bracket allows the new meter to fit the circular hole of the original meter, with the LCD on the front. You might still order a prefab meter module, but you can’t deny this looks good.

Continue reading “Build Your Own Digital Panel Meter”