Underwater Drone Faces Trial By Water

Underwater Remote Operated Vehicles, or ROVs as they’re typically known, generally operate by tether. This is due to the poor propagation of radio waves underwater. [Simon] wanted to build such a drone, but elected to go for an alternative design with less strings attached, so to speak. Thus far, there have been challenges along the way. (Video, embedded below.)

The underwater drone uses a 3D printed chassis, replete with googly eyes that go a long way to anthropomorphizing the build. Four motors are used for control, with two for thrust in the horizontal plane and two mounted in the vertical plane for attitude control. This allows the drone to be set up at neutral buoyancy, and moved through the water column with thrust rather than complicated ballast mechanisms. The build aims to eschew tethers, instead using a shorter cable to link to a floating unit which uses radio to communicate with the operator on the shore.

The major struggle facing the build has been sealing the chassis against water ingress. This is where the layered nature of 3D printing is a drawback. Even with several treatments of paint and sealant, [Simon] has been unable to stop water getting inside the drone. Further problems concern the excess amount of ballast required to counteract the drone’s natural buoyancy due to displacement.

Regardless of the struggles, we look forward to seeing the next revision rectify some of the shortcomings of the current build. We’re sure [Simon’s] experience building an electric surfboard will come in handy. Video after the break.

Continue reading “Underwater Drone Faces Trial By Water”

Hackaday Podcast 052: Shorting Components, Printing Typewriter Balls, Taking Minimal Time Lapse, And Building A Makerspace Movie Prop

Hackaday editors Elliot Williams and Mike Szczys recap a great week in hardware hacking. There’s perfection in the air as clever 3D-printing turns a button and LED matrix into an aesthetically awesome home automation display. Take a crash course in RF modulation types to use on your next project. Did you know the DB-9 connector is actually a DE-9? Building your own underwater ROV tether isn’t as simple as it sounds. And Elliot found a treasure trove of zero-ohm jumpers in chip packages — what the heck are these things for?

Take a look at the links below if you want to follow along, and as always tell us what you think about this episode in the comments!

Direct download (57 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 052: Shorting Components, Printing Typewriter Balls, Taking Minimal Time Lapse, And Building A Makerspace Movie Prop”