AVX-512: When The Bits Really Count

For the majority of workloads, fiddling with assembly instructions isn’t worth it. The added complexity and code obfuscation generally outweigh the relatively modest gains. Mainly because compilers have become quite fantastic at generation code and because processors are just so much faster, it is hard to get a meaningful speedup by tweaking a small section of code. That changes when you introduce SIMD instructions and need to decode lots of bitsets fast. Intel’s fancy AVX-512 SIMD instructions can offer some meaningful performance gains with relatively low custom assembly.

Like many software engineers, [Daniel Lemire] had many bitsets (a range of ints/enums encoded into a binary number, each bit corresponding to a different integer or enum). Rather than checking if just a specific flag is present (a bitwise and), [Daniel] wanted to know all the flags in a given bitset. The easiest way would be to iterate through all of them like so:

while (word != 0) {
  result[i] = trailingzeroes(word);
  word = word & (word - 1);
  i++;
}

The naive version of this look is very likely to have a branch misprediction, and either you or the compiler would speed it up by unrolling the loop. However, the AVX-512 instruction set on the latest Intel processors has some handy instructions just for this kind of thing. The instruction is vpcompressd and Intel provides a handy and memorable C/C++ function called _mm512_mask_compressstoreu_epi32.

The function generates an array of integers and you can use the infamous popcnt instruction to get the number of ones. Some early benchmark testing shows the AVX-512 version uses 45% fewer cycles. You might be wondering, doesn’t the processor downclock when wide 512-bite registers are used? Yes. But even with the downclocking, the SIMD version is still 33% faster. The code is up on Github if you want to try it yourself.

Massively Parallel CPU Processes 256 Shades Of Gray

256

The 1980s were a heyday for strange computer architectures; instead of the von Neumann architecture you’d find in one of today’s desktop computers or the Harvard architecture of a microcontroller, a lot of companies experimented with strange parallel designs. While not used much today, at the time these were some of the most powerful computers of their day and were used as the main research tools of the AI renaissance of the 1980s.

Over at the Norwegian University of Science and Technology a huge group of students (13 members!) designed a modern take on the massively parallel computer. It’s called 256 Shades of Gray, and it processes 320×240 pixel 8-bit grayscale graphics like no microcontroller could.

The idea for the project was to create an array-based parallel image processor with an architecture similar to the Goodyear MPP formerly used by NASA or the Connection Machine found in the control room of Jurassic Park. Unlike these earlier computers, the team implemented their array processor in an FPGA, giving rise to their Lena processor this processor is in turn controlled by a 32-bit AVR microcontroller with a custom-build VGA output.

The entire machine can process 10 frames per second of 320×240 resolution grayscale video. There’s a presentation video available (in Norwegian), but the highlight might be their demo of The Game of Life rendered in real-time on their computer. An awesome build, and a very cool experience for all the members of the class.