PIC Burnout: Dumping Protected OTP Memory In Microchip PIC MCUs

Normally you can’t read out the One Time Programming (OTP) memory in Microchip’s PIC MCUs that have code protection enabled, but an exploit has been found that gets around the copy protection in a range of PIC12, PIC14 and PIC16 MCUs.

This exploit is called PIC Burnout, and was developed by [Prehistoricman], with the cautious note that although this process is non-invasive, it does damage the memory contents. This means that you likely will only get one shot at dumping the OTP data before the memory is ‘burned out’.

The copy protection normally returns scrambled OTP data, with an example of PIC Burnout provided for the PIC16LC63A. After entering programming mode by setting the ICSP CLK pin high, excessively high programming voltage and duration is used repeatedly while checking that an area that normally reads as zero now reads back proper data. After this the OTP should be read out repeatedly to ensure that the scrambling has been circumvented.

The trick appears to be that while there’s over-voltage and similar protections on much of the Flash, this approach can still be used to affect the entire flash bit column. Suffice it to say that this method isn’t very kind to the Flash memory cells and can take hours to get a good dump. Even after this you need to know the exact scrambling method used, which is fortunately often documented by Microchip datasheets.

Thanks to [DjBiohazard] for the tip.

Touch Lamp Tracks ISS With Style

In the comments of a recent article, the question came up as to where to find projects from the really smart kids the greybeards remember being in the 70s. In the case of [Will Dana] the answer is YouTube, where he’s done an excellent job of producing an ISS-tracking lamp, especially considering he’s younger than almost all of the station’s major components.*

There’s nothing ground-breaking here, and [Will] is honest enough to call out his inspiration in the video. Choosing to make a ground-track display with an off-the-shelf globe is a nice change from the pointing devices we’ve featured most recently. Inside the globe is a pair of stepper motors configured for alt/az control– which means the device must reset every orbit, since [Willis] didn’t have slip rings or a 360 degree stepper on hand.  A pair of magnets couples the motion system inside the globe to the the 3D printed ISS model (with a lovely paintjob thanks to [Willis’s girlfriend]– who may or may be from Canada, but did show up in the video to banish your doubts as to her existence), letting it slide magically across the surface. (Skip to the end of the embedded video for a timelapse of the globe in action.) The lamp portion is provided by some LEDs in the base, which are touch-activated thanks to some conductive tape inside the 3D printed base.

It’s all controlled by an ESP32, which fetches the ISS position with a NASA API. Hopefully it doesn’t go the way of the sighting website, but if it does there’s more than enough horsepower to calculate the position from orbital parameters, and we are confident [Will] can figure out the code for that. That should be pretty easy compared to the homebrew relay computer or the animatronic sorting hat we featured from him last year.

Our thanks to [Will] for the tip. The tip line is for hackers of all ages,  but we admit that it’s great to see what the new generation is up to.

*Only the Roll Out Solar Array, unless you only count on-orbit age, in which case the Nakua module would qualify as well.

Continue reading “Touch Lamp Tracks ISS With Style”

160-core RISC V Board Is The M.2 CoProcessor You Didn’t Know You Needed

Aside from GPUs, you don’t hear much about co-processors these days. [bitluni] perhaps missed those days, because he found a way to squeeze a 160 core RISC V supercluster onto a single m.2 board, and shared it all on GitHub.

OK, sure, each core isn’t impressive– he’s using CH32V003, so each core is only running at 48 MHz, but with 160 of them, surely it can do something? This is a supercomputer by mid-80s standards, after all.  Well, like anyone else with massive parallelism, [bitluni] decided to try a raymarcher. It’s not going to replace RTX anytime soon, but it makes for a good demo.

Like his previous m.2 project, an LED matrix,  the cluster is communicating over PCIe via a WCH CH382 serial interface. Unlike that project, blinkenlights weren’t possible: the tiny, hair-thin traces couldn’t carry enough power to run the cores and indicator LEDs at once. With the power issue sorted, the serial interface is the big bottleneck. It turns out this cluster can crunch numbers much faster than it can communicate. That might be a software issue, however, as the cluster isn’t using all of the CH382’s bandwidth at the moment. While that gets sorted there are low-bandwidth, compute-heavy tasks he can set for the cluster. [bitluni] won’t have trouble thinking of them; he has a certain amount of experience with RISCV microcontroller clusters.

We were tipped off to this video by [Steven Walters], who is truly a prince among men. If you are equally valorous, please consider dropping informational alms into our ever-present tip line

Continue reading “160-core RISC V Board Is The M.2 CoProcessor You Didn’t Know You Needed”

Track Your GitHub Activity With This E-Ink Display

If you’re a regular GitHub user you’ll be familiar with the website’s graphical calendar display of activity as a grid. For some of you it will show a hive of activity, while for others it will be a bit spotty. If you’re proud of your graph though, you’ll want to show it off to the world, and that’s where [HarryHighPants]’ Git Contributions E-Ink Display comes in. It’s a small desktop appliance with a persistent display, that shows the current version of your GitHub graph.

At its heart is an all-in-one board with the display and an ESP32 on the back, with a small Li-Po cell. It’s all put in a smart 3D printed case. The software is the real trick, with a handy web interface from which you can configure your GitHub details.

It’s a simple enough project, but it joins a growing collection which use an ESP32 as a static information display. The chip is capable of more though, as shown by this much more configurable device.

Animal Crossing keyboard banner

Making GameCube Keyboard Controller Work With Animal Crossing

[Hunter Irving] is a talented hacker with a wicked sense of humor, and he has written in to let us know about his latest project which is to make a GameCube keyboard controller work with Animal Crossing.

This project began simply enough but got very complicated in short order. Initially the goal was to get the GameCube keyboard controller integrated with the game Animal Crossing. The GameCube keyboard controller is a genuine part manufactured and sold by Nintendo but the game Animal Crossing isn’t compatible with this controller. Rather, Animal Crossing has an on-screen keyboard which players can use with a standard controller. [Hunter] found this frustrating to use so he created an adapter which would intercept the keyboard controller protocol and replace it with equivalent “keypresses” from an emulated standard controller.

Continue reading “Making GameCube Keyboard Controller Work With Animal Crossing”

Photo of Inky Frame e-paper display

Converting An E-Paper Photo Frame Into Weather Map

Here’s a great hack sent in to us from [Simon]. He uses an e-paper photo frame as a weather map!

By now you are probably aware of e-paper technology, which is very low power tech for displaying images. E-paper only uses energy when it changes its display, it doesn’t draw power to maintain a picture it has already rendered. The particular e-paper used in this example is fairly large (as e-paper goes) and supports color (not just black and white) which is why it’s expensive. For about US$100 you can get a 5.7″ 7-color EPD display with 600 x 448 pixels.

Continue reading “Converting An E-Paper Photo Frame Into Weather Map”

Pi Pico Powers Parts-Bin Audio Interface

USB audio is great, but what if you needed to use it and had no budget? Well, depending on the contents of your parts bin, you might be able to use [Veyniac]’s Pico-Audio-Interface as a free (and libre! It’s GPL3.0) sound capture device.

In the project’s Reddit thread, [Veyniac] describes needing audio input for his homemade synth, but having no budget. Necessity being the mother of invention, rather than beg borrow or steal a device with a working sound card, he hacked together this lovely device. It shows up as a USB Audio Class 2.0 device so should work with just about anything, and offers 12-bit resolution and 4x oversampling to try and deal with USB noise with its 2-channel, 44.1 kHz sample rate.

Aside from the Pico, all you need is an LM324 op-amp IC and a handful of resistors and capacitors — [Veyniac] estimates about $10 to purchase the whole BOM. He claims that the captured audio sounds okay in his use, but can’t guarantee it will  be for anyone else, noise being the fickle beast that it is. We figure that sounding “Okay” has got to be pretty good, given that you usually get what you pay for — and again, [Veyniac] did build this in a cave with a box of scraps. Well, except for the cave part. Probably.

While the goal here was not to rival a commercial USB sound card, we have seen projects to do that. We’re quite grateful to [Omadeira] for the tip, because this really is a hack. If you, too, want a share of our undying gratitude (which is still worth its weight in gold, despite fluctuations in the spot price of precious metals), send in a tip of your own.