Grace Hopper, Margaret Hamilton, Richard Garwin Named for Medal of Freedom

Somewhat hidden among athletes, actors, and musicians, three giants of technology have been aptly named as 2016 Presidential Medal of Freedom recipients. Grace Hopper, Margaret Hamilton, and Richard Garwin all made significant contributions to the technology that envelops our lives and embody the quest for knowledge and life-long self learning that we’d like to see in everyone.

Commodore Grace M. Hopper, USN (covered).

Rear Admiral Grace Hopper’s legacy lies with the origins of computer science. She wrote the first compiler. In a time when computers were seen more as calculating machines than easily adaptable frameworks she looked to the future and made it happen. She continued to make huge contributions with lasting effect in developing COBOL, unit testing methods for programmers, and in education. We have long loved her explanation of a nanosecond (and why software engineers shouldn’t waste cycles) and was one of the first to program on the Harvard Mark I which can still be seen in the lobby of the school’s engineering building.

margaret_hamilton_1995As Director of Apollo Flight Computer Programming, Margaret Hamilton is the driving force behind the software of Apollo. When the program started, she was Director of Software Engineering at MIT Instrumentation Laboratory. Originally there wasn’t a plan or budget for software in the space program. Hamilton built the program and led the team who wrote the software and turned it into punch cards to be fed into the computer. We enjoyed reading about some of her adventures during the Apollo project, her drive to develop pristine code is palpable. Over the past year we’ve marveled at the rope memory of the Apollo Guidance Computer and delighted when a hardcopy of AGC software showed up at a party. Her legacy at having written the code for the first portable computer — one that happened to land on the moon and return home safely — is incredible.

richardgarwin1980Physicist Richard Garwin’s name is most associated with the first hydrogen bomb design. But another part of his work is more likely to have directly touched your life: his research into spin-echo magnetic resonance helped lead to the development of Magnetic Resonance Imaging. MRIs have of course become a fundamental tool in medicine. Garwin studied under Fermi during his doctoral work — you may remember Fermi from our look at the Fermiac analog computer last year.

Congratulations to these three recipients, their recognition is incredibly well deserved. We’d love to hear about some of your own technology heroes. Let us know on the tips line so that we may help celebrate their accomplishment and inspire the next generation of giants.

Image Credits:

Bot Wars: A Collateral Gift of the Automation Revolution

I received an email Wednesday morning from a company launching new features for a bot called Trim which will negotiate a lower cable bill for you. Give it your Comcast login info and it will launch a support-chat window and go to work negotiating rates on your behalf. This could be a lower monthly rate, or one-time credits for slow or intermittent service.

This chatbot is a glimpse into our cat-and-mouse future. If rate-reducing automation is widely adopted by customers, Comcast will have an incentive to spot these chatbots and act accordingly, and they’ll probably want to automate that. This leads quickly to a war of bots.

How many times has Hackaday predicted the future? The coming bot wars were hinted at in an article I wrote back in 2009 on the re-emergence of Tradewars 2002. This is a turn-based BBS game that I loved as a child. The second version added an automation layer — the game had become a challenge to write a better script than your opponent to play the game with maximum efficiency. Of course, it’s only a prediction if you realize it at the time. But this gamification of automation from seven years ago is about to jump into the mainstream.

You win if your automation outperforms your competitors; this is the founding idea of the automation age. There’s no event horizon to mark our slide into the new realm. But we know the financial markets have been playing this game for a long time now (think flash crash and algorithmic trading). Continuing the customer service call example, call centers have been using scripts for years. Automation stems from this, just cutting out the human; you may already be talking to a chatbot and not knowing it — a human takes over when the bot has already verified your account info and gets stumped. The real question is will you take up arms by building your own bots or using those available from startups like Trim? Maybe you already have? We’d love to hear about it in the comments below.

[Image Source: the main and thumbnail images are of course from the United Artists film War Games.]

Solving Hackaday’s Crypto Challenge

Although I’ve been to several DEF CONs over the past few years, I’ve never found time to devote to solving the badge. The legendary status of all the puzzles within are somewhat daunting to me. Likewise, I haven’t yet given DefCon DarkNet a try either — a real shame as the solder-your-own-badge nature of that challenge is right up my alley.

But finally, at the Hackaday SuperCon I finally got my feet wet with the crypto challenge created by [Voja Antonic]. He developed a secondary firmware which anyone could easily flash to their conference badge (it enumerates as a USB thumb drive so just copy it over). This turned it into a five-puzzle challenge meant to take two days to solve, and it worked perfectly.

If you were at the con and didn’t try it out, now’s the time (you won’t be the only one late to the game). But even if you weren’t there’s still fun to be had.

Thar’ be spoilers below. I won’t explicitly spill the answers, but I will be discussing how each puzzle is presented and the different methods people were using to finish the quest. Choose now if you want to continue or wait until you’ve solved the challenge on your own.

Continue reading “Solving Hackaday’s Crypto Challenge”

Super-Sizing Leaf Collection; Hackers Doing Yardwork

For many parts of the world, the great raking has begun as deciduous trees in temperate zones drop their leaves. Of course not everyone can abide the simple yet laborious process of manual raking and so they look to technology. You can buy a handheld leaf vacuum, a pull-behind leaf sweeper, or a mower attachment that lifts leaves into hoppers. [Lou] has the latter, but it’s way too small for his taste so he super-sized his leaf collecting hardware.

The hard part of leaf collection has already been solved for [Lou]. The riding lawnmower lifts the leaves and propels them through an angled pipe into three hopper bags which we think total 9 bushels (roughly 80 gallons or 300 liters). That sounds like a lot, but anyone who has recently cleared leaves will attest that they will fill up in no time.

[Lou] builds a light-weigh 4-foot cube covered in deer netting to super-size his hopper to a whopping 51 bushels (475 gallons or 1800 liters)! His first attempt uses a pipe that falls too short to fill leaves to the top, but his final product adds longer ductwork and hits the mark perfectly.

Gardeners everywhere should be salivating right now. Leaf mulch is one of the best things you can put on your garden in the spring. Although [Lou] designed his hopper to be emptied by leaf-blower, adapting this to set the full hopper in an out-of-the-way space would help them breakdown over the winter — turning them into planter’s gold by springtime.

Continue reading “Super-Sizing Leaf Collection; Hackers Doing Yardwork”

Visual Guide to the Best Hacker T-Shirts

Head out in the normal “civilian” world and look at the shirts around you. I don’t want to be too nasty about about it, but let’s face facts — the T-shirts you see will be boring and uninventive. Now compare that to your favorite hacker cons. We wear our shirts like they’re oil paintings.

Going into the weekend of SuperCon I had no intention of writing this post. But then I saw a really awesome shirt and already had the camera in my hands so I asked if I could snap a picture. A bit later that day it happened again. Then I don’t know what came over me. Here are my favorites, but I’ve curated an epic number of great garments for your viewing pleasure after the break.

Continue reading “Visual Guide to the Best Hacker T-Shirts”

Tiny Game Boy (That Plays Witcher 3) and Other Things That Blew My Mind

For years Sprite_TM has been my favorite hacker, and yet he continues to have an uncanny ability to blow my mind with the hacks that he pulls off even though I’m ready for it. This weekend at the Hackaday SuperConference he threw down an amazing talk on his tiny, scratch-built, full-operational Game Boy. He stole the badge hacking show with a Rick Roll, disassembled the crypto challenge in one hour by cutting right to the final answer, and managed to be everywhere at once. You’re a wizard Harry Sprite!

Here’s what’s crazy: these are the antics of just one person of hundreds who I found equally amazing at the conference. It feels impossible to convey to you the absolute sincerity I have when I say that SuperCon was far and away the best conference I’ve ever been to or have even heard about. It managed to outpace any hyperbole I constructed leading up to the weekend. This morning felt like I was waking up from a dream and desperately wanted to fall asleep again.

Continue reading “Tiny Game Boy (That Plays Witcher 3) and Other Things That Blew My Mind”

Dtto Explorer Modular Robot Wins 2016 Hackaday Prize

Dtto, a modular robot designed with search and rescue in mind, has just been named the winner of the 2016 Hackaday Prize. In addition to the prestige of the award, Dtto will receive the grand prize of $150,000 and a residency at the Supplyframe Design Lab in Pasadena, CA.

This year’s Hackaday Prize saw over 1,000 entires during five challenge rounds which asked people to Build Something that Matters. Let’s take a look at the projects that won the top five prizes. They exemplify the five challenge themes: Assistive Technologies, Automation, Citizen Scientist, Anything Goes, and Design Your Concept. dtto-main-image-cropped

Dtto — Explorer Modular Robot

Grand Prize Winner ($150,000 and a residency at the Supplyframe Design Lab): Dtto is modular robot built with 3D printed parts, servo motors, magnets, and readily available electronics. Each module consists of two boxes, rounded on one side, connected by a bar. The modules can join with each other in many different orientations using the attraction of the magnets. Sections can separate themselves using servo motors.

Dtto is groundbreaking in its ability to make modular robots experimentation available to roboticists and hobbiests everywhere by sidestepping what has traditionally been a high-cost undertaking. While it’s easy to dismiss this concept, the multitude of different mechanisms built from modules during testing drives home the power of the system.

imaging-dome-400x300

Affordable Reflectance Transformation Imaging Dome

Second Place ($25,000): Reflectance Transformation Imaging is a method of photographing artifacts multiple times with a fixed camera location but changing lighting locations. When these images are combined into an interface after the fact, it allows for different textures, surface features, and material properties to be observed. Currently there are no commercial version of hardware available for this technique.

laser-cut-optics-bench-400x300

Laser Cut Optics Bench

Third Place ($10,000): An optics bench is a series of jigs used to hold and precisely align elements for optical experiments. Traditionally this meant highly specialized equipment starting in the tens-of-thousands of dollars. But schools, hackerspaces, and individuals don’t need top-of-the-line equipment to begin learning about optics. The project has designed holders for salvaged optics and the ancillary materials to conduct experiments, and even includes a standardized carrying case design.

new-tilt-sensor-400x300

A New High Accuracy Tilt Sensor

Fourth Place ($10,000): This is a reimaging of a Linear Variable Differential Transformer (LVDT). Traditionally, tilt sensors based on LVDTs are built like a small tube with an iron core that can slide from one end to the other as the tube is tilted. This new sensor turns the tube into a hollow ring, and replaces the iron core with ferrofluid (a liquid with the properties of metal). What results is a brand new sensor with properties unavailable in previous tilt sensors.

mechaduino-400x300

Mechaduino

Fifth Place ($5,000). Stepper motors are known for accurate movement, but they are often used as open loop systems and prone to lose track of position either from missed steps or outside interference. Mechaduino adds a high accuracy magnetic encoder to any of several commonly available stepper motors, closing that loop and adding functionality. This includes positional awareness, but goes for beyond to velocity and torque control, and user interaction.