Inside Two-Factor Authentication Apps

Passwords are in a pretty broken state of implementation for authentication. People pick horrible passwords and use the same password all over the place, firms fail to store them correctly and then their databases get leaked, and if anyone’s looking over your shoulder as you type it in (literally or metaphorically), you’re hosed. We’re told that two-factor authentication (2FA) is here to the rescue.

Well maybe. 2FA that actually implements a second factor is fantastic, but Google Authenticator, Facebook Code Generator, and any of the other app-based “second factors” are really just a second password. And worse, that second password cannot be stored hashed in the server’s database, which means that when the database is eventually compromised, your “second factor” blows away with the breeze.

Second factor apps can improve your overall security if you’re already following good password practices. We’ll demonstrate why and how below, but the punchline is that the most popular 2FA app implementations protect you against eavesdropping by creating a different, unpredictable, but verifiable, password every 30 seconds. This means that if someone overhears your login right now, they wouldn’t be able to use the same login info later on. What 2FA apps don’t protect you against, however, are database leaks.

Continue reading “Inside Two-Factor Authentication Apps”

Oh Great, WPA2 Is Broken

WPA2, the standard security for Wi-Fi networks these days, has been cracked due to a flaw in the protocol. Implications stemming from this crack range from decrypting Wi-Fi, hijacking connections, and injecting content. It’s fair to say, WPA2 is now Considered Harmful. The paper is available here (PDF).

This is a proof-of-concept exploit, and like all headline-making network security stories, it has a name. It’s called KRACK, for Key Reinstallation Attack. The key insight to this exploit is a vulnerability in the handshaking between routers and devices to establish a secure connection.

This is not the first time the researchers behind this exploit have found holes in WPA2. In a paper published by the KRACK researchers at the USENIX Symposium last August (PDF), they showed that the Random Number Generator used in 802.11 is flawed, ill-defined, and insecure. The researchers have also spoken at 33c3 on predicting WPA2 Group Keys.

The practical consequences of a poor definition and implementation of an RNG can be found in consumer hardware. The researchers found that in MediaTek-based routers, the only source of randomness is the current time. Meanwhile Broadcom-based routers do not use the RNG proposed by the 802.11 spec, but instead take the MD5 of the current time in microseconds. The researchers do not mention if the current time is a secret.

So what do we do now?

This has happened before. In 2001, WEP, the Wi-Fi security protocol many security-ignorant people are still running, was cracked in much the same was as KRACK. This quickly led to the development of Aircrack, and in 2003, the Wi-Fi Alliance rolled out WPA and WPA2. Sure, you can still select a deprecated security protocol for your router, but the problem of WEP hacking is as solved as it’s ever going to be.

The early 2000s were a different time when it came to wireless networks, though here in 2017 Wi-Fi permeates every cubic inch of our lives. Everything and everyone has Wi-Fi now. This is going to be a bit bigger than cracking WEP, but it remains possible to patch devices to ensure that this exploit is rendered useless. Install those security updates, people! Of course there will still be millions of unpatched devices in a year’s time, and for those routers, IoT baubles, and other wireless devices, turning on WPA2 will be akin to having no security at all.

That said, this isn’t a world-ending Armageddon in the way the botnet of webcams was. You will only be vulnerable if an attacker is within range of your router, and you will still be secure if you’re accessing secure websites. However, turning off Wi-Fi on your phone, relying on mobile data, not ignoring HTTPS cert warnings, and plugging into an Ethernet port might not be a bad idea.

Why Not Expose Your PCBs Through An LCD?

Most people who have dabbled in the world of electronic construction will be familiar in some form with the process of producing a printed circuit board by exposing a UV sensitive coating through a transparent mask, before moving on to etching. Older readers will have created their masks by hand with crêpe paper tape on acetate, while perhaps younger ones started by laser-printing from their CAD package.

How about a refinement of the process, one which does away with the acetate mask entirely? [Ionel Ciobanuc] may have the answer, in the form of an exposure through an LCD screen. The video below the break shows how it’s done, starting with a (probably a bit too lengthy) sequence on applying the photo-resist coating to the board, and then sitting LCD on top of UV lamp with the board positioned at the top of the pile.

It’s an interesting demonstration, and one that certainly removes a step in the process of PCB creation as it brings the pattern direct from computer to board without an intermediate. Whether or not it’s worth the expenditure on an LCD is up to you, after all a sheet of acetate is pretty cheap and if you already have a laser printer you’re good to go. We’re curious to know whether or not any plastic components in the LCD itself might be damaged by long-term exposure to intense UV light.

Continue reading “Why Not Expose Your PCBs Through An LCD?”