Why Satellites Of The Future Will Be Built To Burn

There’s no shortage of ways a satellite in low Earth orbit can fail during the course of its mission. Even in the best case scenario, the craft needs to survive bombardment by cosmic rays and tremendous temperature variations. To have even a chance of surviving the worst, such as a hardware fault or collision with a rogue piece of space garbage, it needs to be designed with robust redundancies which can keep everything running in the face of systemic damage. Of course, before any of that can even happen it will need to survive the wild ride to space; so add high-G loads and intense vibrations to the list of things which can kill your expensive bird.

After all the meticulous engineering and expense involved in putting a satellite into orbit, you might think it would get a hero’s welcome at the end of its mission. But in fact, it’s quite the opposite. The great irony is that after all the time and effort it takes to develop a spacecraft capable of surviving the rigors of spaceflight, in the end, its operators will more than likely command the craft to destroy itself by dipping its orbit down into the Earth’s atmosphere. The final act of a properly designed satellite will likely be to commit itself to the same fiery fate it had spent years or even decades avoiding.

You might be wondering how engineers design a spacecraft that is simultaneously robust enough to survive years in the space environment while at the same time remaining just fragile enough that it completely burns up during reentry. Up until fairly recently, the simple answer is that it wasn’t really something that was taken into account. But with falling launch prices promising to make space a lot busier in the next few years, the race is on to develop new technologies which will help make sure that a satellite is only intact for as long as it needs to be.

Continue reading “Why Satellites Of The Future Will Be Built To Burn”

Video Mangler For All Your Video Mangling Needs

Back in the ’70s and ’80s, before we had computers that could do this sort of thing, there were fully analog video effects. These effects could posterize or invert the colors of a video signal, but for the best example of what these machines could do just go find some old music videos from Top of The Pops or Beat Club. Stuff gets weird, man. Unfortunately, all those analog broadcasting studios ended up in storage a few years ago, so if you want some sweet analog effects, you’re going to have to build your own. That’s exactly what [Julien]’s Video Mangler does. It rips up NTSC and PAL signals, does some weird crazy effects, and spits it right back out.

The inspiration for this build comes from an old ’80s magazine project called the ‘video palette’ that had a few circuits that blurred the image, turned everything negative, and could, if you were clever enough, become the basis for a chroma key. You can have a lot of fun when you split a video signal into its component parts, but for more lo-finess [Julien] is adding a microcontroller and a 12-bit DAC to generate signals that can be mixed in with the video signals. Yes, all of this can still be made now, even though analog TV died a decade ago.

The current status of this project is a big ‘ol board with lots of obscure chips, and as with everything that can be described as circuit bending, there’s going to be a big panel with lots of dials and switches, probably stuffed into a laser-cut enclosure. There’s a mic input for blurring the TV with audio, and enough video effects to make any grizzled broadcast engineer happy.

RIP Rex Garrod, Creator Extraordinaire

Earlier this month, the youth motocross champion, special effects creator, inventor, TV presenter, and Robot Wars competitor, [Rex Garrod] died at the age of 75 after a long battle with dementia. We do not often carry obituaries here at Hackaday, and it’s possible that if you are not a Brit you may not have heard of [Rex], but his work in the time before YouTube would have made him an international must-watch star had he been operating in the age of on-demand Internet video.

I first became aware of Rex when he appeared as assistant to [Tim Hunkin] on his Secret Life of Machines TV series in the late 1980s. He was the man whose job we all wanted, making the most incredible machines and operating them for our entertainment. Our Hardware heroes tribute to [Tim] has a picture of him operating the needle on a giant mock-up of a sewing machine, but he appeared in many more episodes. Of the many tributes to [Rex] that have appeared over the last few days it is [Tim]’s one that probably says the most about his appeal to our community. His propensity for picking up interesting parts from junkyards strikes a chord, and the tale of hugely overpowering car wiper motors by allowing them to be submerged in water is pure genius.

To a slightly younger generation he is best known for his appearances in the British Robot Wars series‘ with his Cassius series of fighting robots. He created one of the first really potent flipper robots in UK robotic combat, and incidentally the first effective self-righting mechanism. As one of the many members of the SMIDSY team that didn’t appear on the recorded TV series’ I encountered him only peripherally, but I remember his work being a major influence on SMIDSY’s run-any-way-up design. Meanwhile for a younger generation still he created the models for the popular children’s TV character Brum, an anthropomorphised scale-model Austin 7 car.

We’ll leave you with a couple of videos featuring [Rex]. The first is from The Secret Life of Machines, in which along with [Tim] he helps explain electronics from first principles, while the second is a fan-created medley of his Robot Wars appearances. Rest in peace [Rex], and thank you.

Continue reading “RIP Rex Garrod, Creator Extraordinaire”