Thus far, the majority of electric cars on sale have been aimed at commuters, fitting into the sedan and SUV segments of the marketplace. Going forward, there’s a very real need for electrification to touch the whole spectrum of automobiles, and that includes work vehicles like pickup trucks. A company called Magna have recently thrown their hat into the ring in just this space, developing a simple drivetrain that can be readily installed in pickup trucks without major modifications. Continue reading “Magna Announces Simple Drive Solution For Electric Pickup Trucks”
Day: April 14, 2021
Gaming With 1 Horsepower Of Rumble Feedback
Force feedback took off in a big way in the late 90s, bringing a sense of realism to flight sticks and racing wheels that hadn’t been there before. Its cheaper haptic cousin was rumble feedback via vibration motors, which does add a little something but it’s more an idea of a feeling than anything relevant to real life. It’s also usually pretty weak, but [teenenggr] has a way around that.
The build takes a regular Playstation controller, and disconnects the internal rumble motors. The controller’s motor output is instead linked to an Arduino Uno’s digital input. When the Arduino detects the rumble motor signal switching on, it turns on a relay, supplying power to a hefty one horsepower induction motor, fitted with an eccentric weight.
What happens next is pure chaos. Essentially equivalent to throwing a brick in a washing machine, the motor shakes the entire desk at the slightest hint of rumble signals from the gain. Sustained vibration commands, such as when firing machine guns in Crysis, flung [teenenggr]’s monitor from the desk. Even with it taped down, game play quickly became impossible as he inadvertently hits ALT-Tab and leaves the game while trying to hang on to the desk for dear life.
Is it a useful hack? No, but it would make an excellent prank if bolted underneath your friend’s gaming rig for a laugh. With that said, the intense vibration probably won’t do any good for mechanical hard drives, anything with edge connectors, or just their computer in general. It’s a big step up from the last [teenenggr] project we featured – a rumble feedback mouse. Video after the break.
Continue reading “Gaming With 1 Horsepower Of Rumble Feedback”
Sanity Check Your Engines With This Dynamometer
As you get ready to pop the hood of your RC car to drop in a motor upgrade, have you ever wondered how much torque you’re getting from these small devices? Sure, we might just look up the motor specs, but why trust the manufacturer with such matters that you could otherwise measure yourself? [JohnnyQ90] did just that, putting together an at home-rig built almost from a stockpile of off-the-shelf parts.
To dig into the details, [JohnnyQ90] has built himself a Prony Brake Dynamometer. These devices are setup with the motor shaft loosely attached to a lever arm that can push down on a force-measuring device like a scale. With our lever attached, we then power up our motor. By gradually increasing the “snugness” of the motor shaft, we introduce sliding friction that “fights” the motor, and the result is that, at equilibrium, the measured torque is the maximum amount possible for the given speed. Keep turning up that friction and we can stall the motor completely, giving us a measurement of our motor’s stall torque.
Arming yourself with a build like this one can give us a way to check the manufacturer’s ratings against our own, or even get ratings for those “mystery motors” that we pulled out the dumpster. And [JohnnyQ90’s] build is a great reminder on how we can leverage a bit of physics and and a handful of home goods to get some meaningful data.
But it turns out that Prony Brake Dynamometers aren’t the only way of measuring motor torque. For a disc-brake inspired, have a look at this final project. And if you’re looking to go bigger, put two motors head-to-head to with [Jeremy Felding’s] larger scale build.
Continue reading “Sanity Check Your Engines With This Dynamometer”