Less Is More — Or How To Replace A $25,000 Bomb Sight For 20 Cents

Depending on who you ask, the Norden bombsight was either the highest of high tech during World War II, or an overhyped failure that provided jobs and money for government contractors. Either way, it was super top secret in its day. It was also expensive. They cost about $25,000 each and the whole program came in at well over a billion dollars. The security was over the top. When not flying, the bombsight was removed from the plane and locked in a vault. There was a pyro device that would self-destruct the unit if it were in danger of being captured. So why did one of the most famous missions of World War II fly with the Norden replaced by 20 cents worth of machined metal? Good question.

You often hear the expression “less is more” and, in this case, it is an accurate idea. I frequently say, though, that “just enough is more.” In this case, though, less was actually just enough. There were three reasons that one famous mission in the Pacific theater didn’t fly the Norden. It all had to do with morale, technology, and secrecy.

Continue reading “Less Is More — Or How To Replace A $25,000 Bomb Sight For 20 Cents”

Great Beginnings: The Antikythera Mechanism Gets A “Day Zero”

When an unknown genius sat down more than 2,000 years ago to design and build an astronomical instrument, chances are good that he or she didn’t think that entire academic institutions devoted to solving its mysteries would one day be established. But such is the enduring nature of the Antikythera mechanism, the gift from antiquity that keeps on giving long after being dredged up from a shipwreck in the Aegean Sea.

And now, new research on the ancient mechanism reveals that like other mechanical calendars, the Antikythera mechanism has a “day zero,” or a minimum possible date that it can display. The analysis by a team led by [Aristeidis Voulgaris] gets deep into the weeds of astronomical cycles, which the mechanism was designed to simulate using up to 37 separate gears, 30 of which have been found. The cycle of concern is the saros, a 223 lunar month cycle of alignments between the Earth, Sun, and Moon. The saros can be used to predict eclipses, astronomical events of immense importance in antiquity, particularly annular eclipses, which occur when the Moon is at apogee and therefore eclipses less of the Sun’s surface.

The researchers looked at historical annular eclipse data and found that saros cycle 58 had a particularly long annular eclipse, on 23 December 178 BCE. The eclipse would have been visible at sunrise in the eastern Mediterranean, and coupled with other astronomical goodies, like the proximity to the winter solstice, the Sun entering Capricorn, and the Moon being new and at apogee, was probably so culturally significant to the builder that it could serve as the initial date for calibrating all the mechanisms pointers and dials.

Others differ with that take, of course, saying that the evidence points even further back, to a start date in the summer of 204 BCE. In any case, if like us you can’t get enough Antikythera, be sure to check out our overview of the mechanism, plus [Clickspring]’s exploration of methods perhaps used to build it.

Versatile Reflow Oven Controller Uses ESP32-S2

[Maker.Moekoe] wanted a single controller board that was usable with different reflow ovens or hotplates. The result is a versatile board based on the ESP32-S2. You can see a video of the board’s assembly in the video below.

The board sports several inputs and outputs including:

  • 2x MAX6675 thermocouple sensor input
  • 2x Fan output with flyback diodes
  • 2x Solid state relay output
  • 3x Buttons
  • 1x LED
  • 1x Buzzer
  • 1x Servo motor output
  • 0.96 inch OLED display

You could probably find a use for the board for other similar applications, not just ovens.

The video is oddly relaxing, watching parts reflow. It is like watching a 3D printer, no matter how many times we see it, we still find it soothing to watch. You can also see how he integrated the board with a toaster oven.

Overall, the board looks great and the workmanship is also very good. If you’ve never seen anyone set heat-set threaded inserts into a 3D printed piece, be sure to watch around the four minute mark.

We’ve seen plenty of oven projects. You can even use an Easy Bake oven.

Continue reading “Versatile Reflow Oven Controller Uses ESP32-S2”