Crowdsourcing SIGINT: Ham Radio At War

I often ask people: What’s the most important thing you need to have a successful fishing trip? I get a lot of different answers about bait, equipment, and boats. Some people tell me beer. But the best answer, in my opinion, is fish. Without fish, you are sure to come home empty-handed.

On a recent visit to Bletchley Park, I thought about this and how it relates to World War II codebreaking. All the computers and smart people in the world won’t help you decode messages if you don’t already have the messages. So while Alan Turing and the codebreakers at Bletchley are well-known, at least in our circles, fewer people know about Arkley View.

The problem was apparent to the British. The Axis powers were sending lots of radio traffic. It would take a literal army of radio operators to record it all. Colonel Adrian Simpson sent a report to the director of MI5 in 1938 explaining that the three listening stations were not enough. The proposal was to build a network of volunteers to handle radio traffic interception.

That was the start of the Radio Security Service (RSS), which started operating out of some unused cells at a prison in London. The volunteers? Experienced ham radio operators who used their own equipment, at first, with the particular goal of intercepting transmissions from enemy agents on home soil.

At the start of the war, ham operators had their transmitters impounded. However, they still had their receivers and, of course, could all read Morse code. Further, they were probably accustomed to pulling out Morse code messages under challenging radio conditions.

Over time, this volunteer army of hams would swell to about 1,500 members. The RSS also supplied some radio gear to help in the task. MI5 checked each potential member, and the local police would visit to ensure the applicant was trustworthy. Keep in mind that radio intercepts were also done by servicemen and women (especially women) although many of them were engaged in reporting on voice communication or military communications.

Continue reading “Crowdsourcing SIGINT: Ham Radio At War”

High-Stakes Fox Hunting: The FCC’s Radio Intelligence Division In World War II

With few exceptions, amateur radio is a notably sedentary pursuit. Yes, some hams will set up in a national or state park for a “Parks on the Air” activation, and particularly energetic operators may climb a mountain for “Summits on the Air,” but most hams spend a lot of time firmly planted in a comfortable chair, spinning the dials in search of distant signals or familiar callsigns to add to their logbook.

There’s another exception to the band-surfing tendencies of hams: fox hunting. Generally undertaken at a field day event, fox hunts pit hams against each other in a search for a small hidden transmitter, using directional antennas and portable receivers to zero in on often faint signals. It’s all in good fun, but fox hunts serve a more serious purpose: they train hams in the finer points of radio direction finding, a skill that can be used to track down everything from manmade noise sources to unlicensed operators. Or, as was done in the 1940s, to ferret out foreign agents using shortwave radio to transmit intelligence overseas.

That was the primary mission of the Radio Intelligence Division, a rapidly assembled organization tasked with protecting the United States by monitoring the airwaves and searching for spies. The RID proved to be remarkably effective during the war years, in part because it drew heavily from the amateur radio community to populate its many field stations, but also because it brought an engineering mindset to the problem of finding needles in a radio haystack.

Continue reading “High-Stakes Fox Hunting: The FCC’s Radio Intelligence Division In World War II”

Retrotechtacular: The TV Bombs Of WWII

Anyone who was around for the various wars and conflicts of the early 2000s probably recalls the video clips showing guided bombs finding their targets. The black-and-white clips came from TV cameras mounted in the nose of the bomb, and were used by bombardiers to visually guide the warhead to the target — often providing for a level of precision amounting to a choice of “this window or that window?” It was scary stuff, especially when you thought about what was on the other side of the window.

Surprisingly, television-guide munitions aren’t exactly new, as this video on TV-guided glide bombs in WWII indicates. According to [WWII US Bombers], research on TV guidance by the US Army Air Force started in 1943, and consisted of a plywood airframe built around a standard 2000-pound class gravity bomb. The airframe had stubby wings for lift and steerable rudders and elevators for pitch and yaw control. Underneath the warhead was a boxy fairing containing a television camera based on an iconoscope or image orthicon, while all the radio gear rode behind the warhead in the empennage. A B-17 bomber could carry two GB-4s on external hardpoints, with a bulky TV receiver provided for the bombardier to watch the bomb’s terminal glide and make fine adjustments with a joystick.

In testing, the GB-4 performed remarkably well. In an era when a good bombardier was expected to drop a bomb in a circle with a radius of about 1,200′ (365 meters) from the aim point, GB-4 operators were hitting within 200′ (60 meters). With results like that, the USAAF had high hopes for the GB-4, and ordered it into production. Sadly, though, the testing results were not replicated in combat. The USAAF’s 388th Bomber Group dropped a total of six GB-4s against four targets in the European Theater in 1944 with terrible results. The main problem reported was not being able to see the target due to reception problems, leaving the bombardiers to fly blind. In other cases, the bomb’s camera returned a picture but the contrast in the picture was so poor that steering the weapon to the target was impossible. On one unfortunate attack on a steel factory in Duren, Germany, the only building with enough contrast to serve as an aiming point was a church six miles from the target.

The GB-4’s battlefield service was short and inglorious, with most of the 1,200 packages delivered never being used. TV-guided bombs would have to wait for another war, and ironically it would be the postwar boom in consumer electronics and the explosion of TV into popular culture would move the technology along enough to make it possible.

Continue reading “Retrotechtacular: The TV Bombs Of WWII”

Bogey Six O’clock!: The AN/APS-13 Tail Warning Radar

Although we think of air-to-air radar as a relatively modern invention, it first made its appearance in WWII. Some late war fighters featured the AN/APS-13 Tail Warning Radar to alert the pilot when an enemy fighter was on his tail. In [WWII US Bombers]’ fascinating video we get a deep dive into this fascinating piece of tech that likely saved many allied pilots’ lives.

Fitted to aircraft like the P-51 Mustang and P-47 Thunderbolt, the AN/APS-13 warns the pilot with a light or bell if the aircraft comes within 800 yards from his rear. The system consisted of a 3-element Yagi antenna on the vertical stabilizer, a 410 Mhz transceiver in the fuselage, and a simple control panel with a warning light and bell in the cockpit.

In a dogfight, this allows the pilot to focus on what’s in front of him, as well as helping him determine if he has gotten rid of a pursuer. Since it could not identify the source of the reflection, it would also trigger on friendly aircraft, jettisoned wing tanks, passing flak, and the ground. This last part ended up being useful for safely descending through low-altitude clouds.

This little side effect turned out to have very significant consequences. The nuclear bombs used on Hiroshima and Nagasaki each carried four radar altimeters derived from the AN/APS-13 system.

Continue reading “Bogey Six O’clock!: The AN/APS-13 Tail Warning Radar”

Retrotechtacular: Making Enough Merlins To Win A War

From the earliest days of warfare, it’s never been enough to be able to build a deadlier weapon than your enemy can. Making a sharper spear, an arrow that flies farther and straighter, or a more accurate rifle are all important, but if you can’t make a lot of those spears, arrows, or guns, their quality doesn’t matter. As the saying goes, quantity has a quality of its own.

That was the problem faced by Britain in the run-up to World War II. In the 1930s, Rolls-Royce had developed one of the finest pieces of engineering ever conceived: the Merlin engine. Planners knew they had something special in the supercharged V-12 engine, which would go on to power fighters such as the Supermarine Spitfire, and bombers like the Avro Lancaster and Hawker Hurricane. But, the engine would be needed in such numbers that an entire system would need to be built to produce enough of them to make a difference.

“Contribution to Victory,” a film that appears to date from the early 1950s, documents the expansive efforts of the Rolls-Royce corporation to ramp up Merlin engine production for World War II. Compiled from footage shot during the mid to late 1930s, the film details not just the exquisite mechanical engineering of the Merlin but how a web of enterprises was brought together under one vast, vertically integrated umbrella. Designing the engine and the infrastructure to produce it in massive numbers took place in parallel, which must have represented a huge gamble for Rolls-Royce and the Air Ministry. To manage that risk, Rolls-Royce designers made wooden scale models on the Merlin, to test fitment and look for potential interference problems before any castings were made or metal was cut. They also set up an experimental shop dedicated to looking at the processes of making each part, and how human factors could be streamlined to make it easier to manufacture the engines.

Continue reading “Retrotechtacular: Making Enough Merlins To Win A War”

How To Properly Patch Your Iowa-Class Battleship

There’s a saying among recreational mariners that the word “boat” is actually an acronym for “bring out another thousand”, as it seems you can’t operate one for long without committing to expensive maintenance and repairs. But this axiom isn’t limited to just civilian pleasure craft, it also holds true for large and complex vessels — although the bill generally has a few more zeros at the end.

Consider the USS New Jersey (BB-62), an Iowa-class battleship that first served in the Second World War and is now operated as a museum ship. Its recent dry docking for routine repair work has been extensively documented on YouTube by curator [Ryan Szimanski], and in the latest video, he covers one of the most important tasks crews have to attend to while the ship is out of the water: inspecting and repairing the hundreds of patches that line the hull.

These patches aren’t to repair damage, but instead cover up the various water inlets and outlets required by onboard systems. When New Jersey was finally decommissioned in 1991, it was hauled out of the water and plates were welded over all of these access points to prevent any potential leaks. But as the Navy wanted to preserve the ship so it could potentially be reactivated if necessary, care was taken to make the process reversible.

Continue reading “How To Properly Patch Your Iowa-Class Battleship”

Daily Inspections Keep Your Spitfire In Tip-Top Shape

What ho, chaps? Look, we know this is a bally nuisance and all, but those desk jockeys at HQ want us all to watch this film about daily insepction of your Spitfire. No Vera and no Greta in this one, more’s the pity, but it is jolly important. We all know that our Spitfires are complicated buckets of bolts, but those kites won’t stay in the air if we don’t maintain them. Yes, the boring stuff, like purging the fuel system of water and refueling outside of the hanger. And, yes, Captain Molesworth, that means putting out that cigar while the tech boys are topping off your tank. Now shut up and watch the film we’ve placed below the break, what?

All right, all right, wake up at the back there. I heard you snoring, Peason. The bally Germans could hear you snoring. I know that wasn’t Errol Flynn, but this stuff is damned essential. You may be pilots, but you all rely on those people you just saw. Your lives depend on the riggers, armorers, instrument repairers, and others. While you are out carousing, these men are taking your plane apart and ensuring the engine is running smoother than the legs of the barmaid at the Dog & Duck. Every time one of you chaps calls Bingo Fuel, you get home because some chap checked your fuel gauge was accurate. Every time one of you glances at the Rate of Climb indicator to judge an intercept, you are relying on the chap who tested and zeroed it while you were snoring in your bunk, sleeping off last nights debauch. So, don’t forget that you are part of a team. You may be full of dauntless spiritĀ  up there, but you won’t get anywhere without those chaps on the ground.

Now, let’s talk about tonight’s mission…

Continue reading “Daily Inspections Keep Your Spitfire In Tip-Top Shape”