Rubik’s WOWCube: What Really Makes A Toy?

If there ever was a toy that enjoys universal appeal and recognition, the humble Rubik’s Cube definitely is on the list. Invented in 1974 by sculptor and professor of architecture Ernő Rubik with originally the name of Magic Cube, it features a three-by-three grid of colored surfaces and an internal mechanism which allows for each of these individual sections of each cube face to be moved to any other face. This makes the goal of returning each face to its original single color into a challenge, one which has both intrigued and vexed many generations over the decades. Maybe you’ve seen one?

Although there have been some variations of the basic 3×3 grid cube design over the years, none have been as controversial as the recently introduced WOWCube. Not only does this feature a measly 2×2 grid on each face, each part of the grid is also a display that is intended to be used alongside an internal processor and motion sensors for digital games. After spending many years in development, the Rubik’s WOWCube recently went up for sale at $299, raising many questions about what market it’s really targeting.

Is the WOWCube a ‘real’ Rubik’s Cube, and what makes something into a memorable toy and what into a mere novelty gadget that is forgotten by the next year like a plague of fidget spinners?

Continue reading “Rubik’s WOWCube: What Really Makes A Toy?”

The Texas Instruments branding with some schematic symbols in background.

More Than 100 Sub-Circuit Designs From Texas Instruments

We were recently tipped off to quite a resource — on the Texas Instruments website, there’s a page where you can view and download a compendium of analog sub-circuits.

Individual circuits can be downloaded in the form of PDF files. If you chose to register (which is free), you’ll also gain access to the pair of e-books listed at the bottom of the page: Analog Engineer’s Circuit Cookbook: Amplifiers and Analog Engineer’s Circuit Cookbook: Data Converters. The data converter circuits can be further subdivided into analog-to-digital converter (ADC) circuits and digital-to-analog converter (DAC) circuits.

There are more than 60 amplifier circuits including basic circuits, current sensing circuits, signal sources, current sources, filters, non-linear circuits (rectifiers/clamps/peak detectors), signal conditioning, comparators, sensor acquisition, audio, and integrated amplifier circuits using MSP430 microcontrollers.

You’ll also find 39 analog-to-digital converter (ADC) circuits including low-power, small size, and cost optimized circuits; level translation and input drive circuits; low-level sensor input circuits; input protection, filtering and isolation circuits; and commonly used auxiliary circuits. Finally, there are 15 digital-to-analog converter (DAC) circuits including audio outputs, auxiliary and biasing circuits, current sources, and voltage sources.

Thanks to [Lee Leduc] for letting us know over on the EEVblog Forum.

Factorio Running On Mobile

As a video game, DOOM has achieved cult status not just for its legendary gameplay and milestone developments but also because it’s the piece of software that’s likely been ported to the most number of platforms. Almost everything with a processor can run the 1993 shooter, but as it ages, this becomes less of a challenge. More modern games are starting to move into this position, and Factorio may be taking a leading position. [Point Substantial] has gotten this game to run on a mobile phone.

The minimum system requirements for Factorio are enough to make this a challenge, especially compared to vintage title like DOOM. For Linux systems a dual-core processor and 8 GB of memory are needed, as well as something with at least 1 GB of VRAM. [Point_Substantial]’s Xiaomi Mi 9T almost meets these official minimum requirements, with the notable exception of RAM. This problem was solved by adding 6 GB of swap space to make up for the difference.

The real key to getting this running is that this phone doesn’t run Android, it runs the Linux-only postmarketOS. Since it’s a full-fledged Linux distribution rather than Android, it can run any software any other Linux computer can, including Steam. And it can also easily handle inputs for periphreals including a Switch Pro controller, which is important because this game doesn’t have touch inputs programmed natively.

The other tool that [Point_Substantial] needed was box86/box64, a translation layer to run x86 code on ARM. But with all the pieces in place it’s quite possible to run plenty of games semi-natively on a system like this. In fact, we’d argue it’s a shame that more phones don’t have support for Linux distributions like postmarketOS based on the latest news about Android.

Thanks to [Keith] for the tip!