Keeping Track Of Old Computer Manuals With The Manx Catalog

An unfortunate reality of pre-1990s computer systems is that any manuals and documentation that came with them likely only existed on paper. That’s not to say there aren’t scanned-in (PDF) copies of those documents floating around, but with few of these scans being indexable by search engines like Google and Duck Duck Go, they can be rather tricky to find. That’s where the Manx catalog website seeks to make life easier. According to its stats, it knows about 22,060 manuals (9,992 online) across 61 websites, with a focus on minicomputers and mainframes.

The code behind Manx is GPL 2.0 licensed and available on GitHub, which is where any issues can be filed too. While not a new project by any stretch of the imagination, it’s yet another useful tool to find a non-OCR-ed scan of the programming or user manual for an obscure system. As noted in a recent Hacker News thread, the ‘online’ part of the above listed statistics means that for manuals where no online copy is known, you get a placeholder message. Using the Bitsavers website along with Archive.org may still be the most pertinent way to hunt down that elusive manual, with the Manx website recommending 1000bit for microcomputer manuals.

Have you used the Manx catalog, or any of the other archiving websites? What have been your experiences with them? Let us know in the comments.

Apollo Lunar Surface Experiments Package of the Apollo 16 mission (Credit: NASA)

ALSEP: Apollo’s Modular Lunar Experiments Laboratory

Down-Sun picture of the RTG with the Central Station in the background. (Credit: NASA)
Down-Sun picture of the RTG with the Central Station in the background. (Credit: NASA)

Although the US’ Moon landings were mostly made famous by the fact that it featured real-life human beings bunny hopping across the lunar surface, they weren’t there just for a refreshing stroll over the lunar regolith in deep vacuum. Starting with an early experimental kit (EASEP) that was part of the Apollo 11 mission, the Apollo 12 through Apollo 17 were provided with the full ALSEP (Apollo Lunar Surface Experiments Package). It’s this latter which is the subject of a video by [Our Own Devices].

Despite the Apollo missions featuring only one actual scientist (Harrison Schmitt, geologist), these Bendix-manufactured ALSEPs were modular, portable laboratories for running experiments on the moon, with each experiment carefully prepared by scientists back on Earth. Powered by a SNAP-27 radioisotope generator (RTG), each ALSEP also featured the same Central Station command module and transceiver. Each Apollo mission starting with 12 carried a new set of experimental modules which the astronauts would set up once on the lunar surface, following the deployment procedure for that particular set of modules.

Although the connection with the ALSEPs was terminated after the funding for the Apollo project was ended by US Congress, their transceivers remained active until they ran out of power, but not before they provided years worth of scientific data on many aspects on the Moon, including its subsurface characteristics and exposure to charged particles from the Sun. These would provide most of our knowledge of our Moon until the recent string of lunar landings by robotic explorers.

Heading image: Apollo Lunar Surface Experiments Package of the Apollo 16 mission (Credit: NASA)

Continue reading “ALSEP: Apollo’s Modular Lunar Experiments Laboratory”

Atoms For Peace: The US Nuclear Fleet Build-Out And Modern-Day Revival

By the end of World War II the world had changed forever, as nuclear weapons were used for the first and – to this date – only time in anger. Although the use of these weapons was barely avoided during the Korean War in the early 1950s, the dawning of the Atomic Age had come in the form of obliterated cities and an increasing number of these weapons being test fired around the world. It was against this background that on December 8, 1953, US President Dwight D. Eisenhower held his ‘Atoms for Peace’ speech, during which he would not only promote the peaceful use of nuclear technologies but also lay the groundwork for what would become the International Atomic Energy Agency (IAEA), as announced in the full speech.

Under the Eisenhower administration the US became one of the world’s nuclear power pioneers, as it competed with the UK and later others in establishing world’s firsts in commercial nuclear power. Dresden Generating Station would become the first purely commercial boiling water reactor (BWR) in 1960 and Yankee-Rowe, the first pressurized water reactor (PWR) in 1961. Following these, the number of new reactors planned and constructed kept increasing year over year, setting the trend for the few decades of the US nuclear power industry.

Today the US operates 94 reactors, which generate nearly 20% of the country’s electricity. Exactly how did the US build so many reactors before 1990, and how does this compare to the recent revival with both new builds and retired plants being put back into service?

Continue reading “Atoms For Peace: The US Nuclear Fleet Build-Out And Modern-Day Revival”

Silicone Tubing As Springs For Capacitive Touch Buttons

Capacitive touch buttons are a great way to turn just about any (non-conductive) surface into a button, but people generally dislike the lack of tactile feedback.  [KontinuumLab] apparently agreed and decided to experiment a bit with ways to make such buttons more springy. You can check out the results of those experiments in the video below. There are a few ways to add some spring to buttons and switches like these, including compliant mechanisms in the (3D-printed) plastic structure, but this isn’t always an option in a project. A separate plastic spring can be added, but they aren’t very durable. A metal spring works great but can be a bit of a hassle to integrate and they aren’t as cheap as the other options. So what about everyone’s favorite keyboard switch, the rubber dome type?

Silicone tubing is plentiful and (generally) cheap. It can be selected for just the right springiness and dimensions, and in the automated test that [KontinuumLab] ran, it is also very durable in this application. When your goal is to have a switch that activates at the end of the travel, this may work a treat, with the size of the silicone tube determining the travel before the finger gets close enough to trigger the switch. As rubber dome keyboards demonstrate, this is a highly reliable technology, though this version ditches the typical membrane for the capacitive touch sensor.

Sometimes, a metal spring is the right option, of course, such as when you want to make a surface a touch sensor and the PCB is at the other side of the enclosure. The fun part is that we have all of these options to make our projects work, with many being very affordable to hobbyists. Not all touch sensors require a finger, either.

Thanks to [BrightBlueJim] for the tip.

Continue reading “Silicone Tubing As Springs For Capacitive Touch Buttons”

Illustrative models of collinear ferromagnetism, antiferromagnetism, and altermagnetism in crystal-structure real space and nonrelativistic electronic-structure momentum space. (Credit: Libor Šmejkal et al., Phys. Rev. X, 2022)

Nanoscale Imaging And Control Of Altermagnetism In MnTe

Altermagnetism is effectively a hybrid form of ferromagnetism and antiferromagnetism that might become very useful in magnetic storage as well as spintronics in general. In order to practically use it, we first need to be able to control the creation of these altermagnets, which is what researchers have now taken the first steps towards. The research paper by [O. J. Amin] et al. was published earlier this month in Nature. It builds upon the team’s earlier research, including the detection of altermagnetism in manganese telluride (MnTe). This new study uses the same material but uses a photoemission electron microscope (PEEM) with X-rays to image these nanoscale altermagnetic structures.

Continue reading “Nanoscale Imaging And Control Of Altermagnetism In MnTe”

Intel Terminates X86S Initiative After Formation Of New Industry Group

Although the world of the X86 instruction set architecture (ISA) and related ecosystem is often accused of being ‘stale’ and ‘bloated’, we have seen a flurry of recent activity that looks to shake up and set the future course for what is still the main player for desktop, laptop and server systems. Via Tom’s Hardware comes the news that the controversial X86S initiative is now dead and buried. We reported on this proposal when it was first announced and a whitepaper released. This X86S proposal involved stripping 16- and 32-bit features along with rings 1 and 2, along with a host of other ‘legacy’ features.

This comes after the creation of a new x86 advisory group that brings together Intel, AMD, as well as a gaggle of industry giants ranging from HP and Lenovo to Microsoft and Meta. The goal here appears to be to cooperate on any changes and new features in the ISA, which is where the unilateral X86S proposal would clearly have been a poor fit. This means that while X86S is dead, some of the proposed changes may still make it into future x86 processors, much like how AMD’s 64-bit extensions to the ISA, except this time it’d be done in cooperation.

In an industry where competition from ARM especially is getting much stronger these days, it seems logical that x86-oriented companies would seek to cooperate rather than compete. It should also mean that for end users things will get less chaotic as a new Intel or AMD CPU will not suddenly sneak in incompatible extensions. Those of us who remember the fun of the 1990s when x86 CPUs were constantly trying to snipe each other with exclusive features (and unfortunate bugs) will probably appreciate this.

Fixing 1986 Sinclair Spectrum+2 With A High-Score Of Issues

The Sinclair ZX Spectrum+2 was the first home computer released by Amstrad after buying up Sinclair. It’s basically a Sinclair ZX Spectrum 128, but with a proper keyboard and a built-in tape drive. The one that [Mark] of the Mend it Mark YouTube channel got in for repair is however very much dead. Upon first inspection of the PCB, it was obvious that someone had been in there before, replacing the 7805 voltage regulator and some work on other parts as well, which was promising. After what seemed like an easy fix with a broken joint on the 9 VDC input jack, the video output was however garbled, leading to the real fault analysis.

Fortunately these systems have full schematics available, allowing for easy probing on the address and data lines. Based on this the Z80 CPU was swapped out to eliminate a range of possibilities, but this changed nothing with the symptoms, and a diagnostic ROM cartridge didn’t even boot. Replacing a DS74LS157 multiplexer and trying different RAM chips also made no difference. This still left an array of options on what could be wrong.

Tracking down one short with an IC seemed to be a break, but the video output remained garbled, leaving the exciting possibility of multiple faults remaining. This pattern continues for most of the rest of the video, as through a slow process of elimination the bugs are all hunted down and eliminated, leaving a revived Spectrum+2 (and working tape drive) in its wake, as well as the realization that even with all through-hole parts and full schematics, troubleshooting can still be a royal pain.

Continue reading “Fixing 1986 Sinclair Spectrum+2 With A High-Score Of Issues”