An artist's depiction of a lystrosaurus munching on a prehistoric plant. It looks kind of like a hippo with a beak. The main body of the animal is grey-ish green and it's beak is ivory with two tusks jutting out from its top jaw.

Mammalian Ancestors Shed Light On The Great Dying

As we move through the Sixth Extinction, it can be beneficial to examine what caused massive die-offs in the past. Lystrosaurus specimens from South Africa have been found that may help clarify what happened 250 million years ago. [via IFLScience]

The Permian-Triassic Extinction Event, or the Great Dying, takes the cake for the worst extinction we know about so far on our pale blue dot. The primary cause is thought to be intense volcanic activity which formed the Siberian Traps and sent global CO2 levels soaring. In Karoo Basin of South Africa, 170 tetrapod fossils were found that lend credence to the theory. Several of the Lystrosaurus skeletons were preserved in a spread eagle position that “are interpreted as drought-stricken carcasses that collapsed and died of starvation in and alongside dried-up water sources.”

As Pangea dried from increased global temperatures, drought struck many different terrestrial ecosystems and changed them from what they were before. The scientists say this “likely had a profound and lasting influence on the evolution of tetrapods.” As we come up on the Thanksgiving holiday here in the United States, perhaps you should give thanks for the prehistoric volcanism that led to your birth?

If you want to explore more about how CO2 can lead to life forms having a bad day, have a look at paleoclimatology and what it tells us about today. In more recent history, have a look at how we can detect volcanic eruptions from all around the world and how you can learn more about the Earth by dangling an antenna from a helicopter.

 

Pac-Man Ghost Helps With Air Quality Sensing

In the past, building construction methods generally didn’t worry much about air quality. There were enough gaps around windows, doors, siding, and flooring that a house could naturally “breathe” and do a decent enough job of making sure the occupants didn’t suffocate. Modern buildings, on the other hand, are extremely concerned with efficiency and go to great lengths to ensure that no air leaks in or out. This can be a problem for occupants though and generally requires some sort of mechanical ventilation, but to be on the safe side and keep an eye on it a CO2 sensor like this unique Pac-Man-inspired monitor can be helpful.

Although there are some ways to approximate indoor air quality with inexpensive sensors, [Tobias] decided on a dedicated CO2 sensor for accuracy and effectiveness, despite its relatively large cost of around $30. An ESP32 handles the data from the sensor and then outputs the results to an array of LEDs hidden inside a ghost modeled after the ones from the classic arcade game Pac-Man. There are 17 WS2812B LEDs in total installed on a custom PCB, with everything held together in the custom 3D printed ghost-shaped case. The LEDs change from green to red as the air quality gets worse, although a few preserve the ghost’s white eyes even as the colors change.

For anyone looking to recreate this project and keep an eye on their own air quality, [Tobias] has made everything from the code, the PCB, and the 3D printer files open source, and has used accessible hardware in the build as well. Although the CO2 sensors can indeed be pricey, there are a few less expensive ways of keeping an eye on indoor air quality. Some of these methods attempt to approximate CO2 levels indirectly, but current consensus is that there’s no real substitute for taking this measurement directly if that’s the metric targeted for your own air quality.

An Earth-Bound Homage To A Martian Biochemistry Experiment

With all the recent attention on Mars and the search for evidence of ancient life there, it’s easy to forget that not only has the Red Planet been under the figurative microscope since the early days of the Space Race, but we went to tremendous effort to send a pair of miniaturized biochemical laboratories there back in 1976. While the results were equivocal, it was still an amazing piece of engineering and spacefaring, one that [Marb] has recreated with this Earth-based version of the famed Viking “Labeled Release” experiment.

The Labeled Release experimental design was based on the fact that many metabolic processes result in the evolution of carbon dioxide gas, which should be detectable by inoculating a soil sample with a nutrient broth laced with radioactive carbon-14. For this homage to the LR experiment, [Marb] eschewed the radioactive tracer, instead looking for a relative increase in the much lower CO2 concentration here on Earth. The test chamber is an electrical enclosure with a gasketed lid that holds a petri dish and a simple CO2 sensor module. Glands in the lid allow an analog for Martian regolith — red terrarium sand — and a nutrient broth to be added to the petri dish. Once the chamber was sterilized, or at least sanitized, [Marb] established a baseline CO2 level with a homebrew data logger and added his sample. Adding the nutrient broth — a solution of trypsinized milk protein, yeast extract, sugar, and salt — gives the bacteria in the “regolith” all the food they need, which increases the CO2 level in the chamber.

More after the break…

Continue reading “An Earth-Bound Homage To A Martian Biochemistry Experiment”

Dry Ice From Seashells, The Hard (But Cheap) Way

[Hyperspace Pirate] wants to make his own dry ice, but he wants it to be really, really cheap. So naturally, his first stop is… the beach?

That’s right, the beach, because that’s where to find the buckets of free seashells that he turned into dry ice. Readers may recall previous efforts at DIY dry ice, which used baking soda and vinegar as a feedstock. We’d have thought those were pretty cheap materials for making carbon dioxide gas, but not cheap enough for [Hyperspace Pirate], as the dry ice he succeeded in making from them came out to almost ten bucks a pound. The low yield of the process probably had more to do with the high unit cost, in truth, so cheaper feedstocks and improved yield would attack the problem from both ends.

With a supply of zero-cost calcium carbonate from the beach and a homemade ZVS-powered induction heater tube furnace at the ready, [Hyperspace Pirate] was ready to make quicklime and capture the CO2 liberated in the process. That proved to be a little more difficult than planned since the reaction needed not just heat but a partial vacuum to drive the CO2 off. An oil-free vacuum pump helped, yielding a little CO2, but eventually he knuckled under and just doused the shells in vinegar. This had the fun side effect of creating calcium acetate, which when distilled not only corrodes the copper still plumbing but also makes a lousy but still flammable grade of acetone. Once enough CO2 was stored in a couple of beach balls, the process of cooling and condensing it into dry ice was pretty much the same as the previous method, except for taking advantage of the Joule-Thomson cryocooler he built a while back.

The result is a hundred or so grams of dry ice snow, which isn’t great but still shows promise. [Hyperspace Pirate] feels like the key to improving this process is more heat to really drive the calcination reaction. Might we suggest a DIY tube furnace for that job?

Continue reading “Dry Ice From Seashells, The Hard (But Cheap) Way”

Fuel Cell Turns PET And Carbon Dioxide Into Useful Chemicals

The University of Cambridge has a novel fuel cell design that can grab CO2 from the atmosphere or industrial processes and, combined with waste PET plastic, provides syngas and glycolic acid, a product used in some cosmetics. You can read about the device in a recent paper.

The strange juxtaposition of CO2 and PET is no accident. The processes work together with solar energy. There is no external voltage required, but the cell operates as a photocell to produce electricity from the solar energy. Removing both CO2 and waste plastic from the environment is a good thing.

Syngas is hydrogen and carbon monoxide and finds use in producing methanol and ammonia. It also will work as a fuel that can replace gasoline when gasoline isn’t available. It has a few other uses, like reducing iron ore to sponge iron and even converting methanol to gasoline.

The technology has a ways to go to operate at scale, and we doubt this will ever be a consumer item since you are unlikely to need syngas or glycolic acid in your home or vehicle. But it still is a promising technique to reduce both greenhouse gas and plastic waste in one swoop.

We’ve looked at other ways to grab carbon dioxide and make it useful. If you want to make your own syngas, there are other ways to do it.

These 3D Printed Biocatalytic Fibers Scrub Carbon Dioxide

On today’s episode of “What If?” — what if the Apollo 13 astronauts had a 3D printer? Well, for one thing, they may have been able to avoid all the futzing with duct tape and procedure list covers to jury rig the lithium hydroxide filters, at least if they’d known about these 3D printed enzymatic CO2 filters. And time travel…they probably would have needed that too.

A bit of a stretch, yes, but environmental CO2 scrubbing is at least one use case for what [Jialong Shen] et al from the Textile Engineering Department at North Carolina State University have developed here. The star of the show isn’t so much the 3D printing — although squirting out a bio-compatible aerogel and cross-linking it with UV light on the fly is pretty cool. Rather, the key to developing a CO2-scrubbing textile is carbonic anhydrase, or CA, a ubiquitous enzyme that’s central to maintaining acid-base homeostasis. CA is a neat little enzyme that coordinates a zinc ion in its active site and efficiently catalyzes the addition of water to carbon dioxide to produce bicarbonate and hydrogen ions. A single CA molecule can catalyze the conversion of up to a million CO2 molecules per second, making it very attractive as a CO2 filter.

In the current work, an aerogel of poly(ethylene glycol) diacrylate/poly(ethylene oxide) (PEG-DA/EO) was used to entrap CA molecules, holding them in place in a polymer matrix to protect them from denaturation while still allowing access to gaseous CO2. The un-linked polymers were mixed with photoinitiators and a solution of carbonic anhydrase and extruded through a fine nozzle with a syringe pump. The resulting thread was blasted with 280–450 nm UV light, curing the thread instantly. The thread is either wound up as a mono-filament for later weaving or printed directly into a 2D grid.

The filament proved to be quite good at CO2 capture, managing to scavenge 24% of the gas from a mixture passed over it. What’s more, the entrapped enzyme appears to be quite stable, surviving washes with various solvents and physical disruptions like twisting and bending. It’s an exciting development in catalytic textiles, and besides its obvious environmental uses, something like this could make cheap, industrial-scale bioreactors easier to build and run.

Photo credits: [Sen Zhang] and [Jialong Shen], NC State; [Rachel Boyd], Spectrum News 1

[via Phys.org]

Cheaper Sodastream With A Big CO2 Tank Is A Semi-Dangerous Way To Save

Sodastream machines are a fun way to turn tap water into carbonated water. However, the canisters are expensive and generally require a trip to the store to get a replacement. Lifehacker has a workaround that may make life easier for the bubble-addicted set.

The trick is simple: simply buy a larger bottle of CO2, and hook it up to the Sodastream in place of the regular cartridge. CO2 can be bought in large cylinders at a far cheaper rate than Sodastream will charge you for their proprietary canisters. All you need is a local supplier of food-grade CO2 in cylinders, and you can visit them when you need a refill or swap.

There are several caveats, though, which the comment section dicussed when we featured a similar hack before. Getting an extra-large CO2 canister can pose a risk to life if there’s a leak. Alarms may not save you as the heavy gas has a tendency to lurk low to the ground. You should also consider using a regulator to lower the pressure from your large canister to something closer to the levels the Sodastream machine is built to withstand. Beyond that, you want to ensure you’re using food-grade CO2. Don’t go bubbling cheap welding gas through your water if you want to live a long and healthy life.

It’s a neat hack, it’s just one that requires you to practice proper gas safety at all times. Reports are that a cylinder costing less than $200 can last you for several years though, with ultra-cheap refills, so it may indeed be worth the hassle! Go forth and bubble, friends.