Self Driving Like It’s 1993

In a stunning example of the Baader Meinhof effect, we’ve recently heard several times this week about events like the “carbage run.” That is, a motoring event where you can only buy some garbage car to compete. In the case of [Robbe Derks], the idea was to take a six-day journey to the polar circle in a car. But not just any car. It had to be at least 20 years old and cost less than €1000. That wasn’t hard enough for [Robbe] and friends. They also decided to make the car self-driving.

If you have a car that is new enough, this might not be as hard as it sounds. The OpenPilot project adds L2 self-driving features to about 275 car models. But probably not a 20-year-old junker or, in particular, a 1993 Volvo 940. [Robbe] took up the challenge and is doing a series of blog posts covering how it all worked.

Continue reading “Self Driving Like It’s 1993”

High Performance RISC-V

From the Institute of Computing Technology division of the Chinese Academy of Sciences and Peng Cheng Laboratory comes a high-performance and well-documented RISC-V core called XiangShan.

In the Git repository, you’ll find several branches including at least two stable branches: Yanqihu and Nanhu. The currently developed architecture, Kunminghu, is impressive, with a sophisticated instruction fetch unit, a reorder buffer, and a register renaming scheme.

The point of these types of circuits in a CPU is to allow multiple instructions to process at once. This also implies that instructions can be executed out of order. A cursory glance didn’t show any branch prediction logic, but that may be a limitation of the documentation. If there isn’t one, that would be an interesting thing to add in a fork if you are looking for a project.

On the computing side, the processor contains an integer block, a floating point unit, and a vector processor. Clearly, this isn’t a toy processor and has the capability to compete with serious modern CPUs.

There is a separate GitHub for documentation. It looks like they try to keep documentation in both Mandarin and English. You can also find some of the academic papers about the architecture there, too.

We love CPU design, and this is an interesting chance to contribute to an open CPU while there are still interesting things to do. If you need to start with something easier, plenty of small CPUs exist for educational purposes.

Organizing Components, The Easy Way

There’s an old joke: What do you get someone who has everything? A place to put it. For hackers like [Christian], everything is a hoard of priceless electronic components. His solution is using small zipper bags, either regular plastic or anti-static. These attach using hook and loop fastener to plastic binder sheets which then live in a binder. Combined with some custom printed labels and a few other tricks, it makes for a nice system, as you can see in the video below.

Honestly, we’ve done something similar before, using a binder with little pockets, but the bag and custom labels beat our system. He even has QR codes on some of them to locate data sheets easily. Seems like a barcode for inventory management might have been good, too.

Continue reading “Organizing Components, The Easy Way”

Hackaday Podcast Episode 302: Scroll Wheels, Ball Screws, And A New Year For USB-C

After a bit too much eggnog, Elliot Williams and Al Williams got together to see what Hackaday had been up to over the holiday. Turns out, quite a bit. There was a lot to cover, but the big surprise was the “What’s that Sound” competition. Do you know who had the correct answer from the last show? No one! So they guys did the right thing and drew from all the entrants for a coveted Hackaday Podcast T-shirt.

Back to the hacks, you’ll hear about USB-C and the EU, what to do when the Kickstarter product you had your heart set on doesn’t deliver, and a very strange way to hack some power grids wirelessly.

If you are interested in physics cameras, modifying off-the-shelf gear, or a fresh approach to color 3D printing, they’ll talk about that, too. Finally,  you can find out what Tom Nardi thought of Hackaday in the year past, and if your next ocean voyage will have to stop for a charge.

 

Download the MP3 full of optimism for 2025 resolutions.

Continue reading “Hackaday Podcast Episode 302: Scroll Wheels, Ball Screws, And A New Year For USB-C”

[Kerry Wong] Talks (and Talks) About A 300 MHz Oscilloscope

There aren’t many people who could do an hour-long video reviewing an oscilloscope, but [Kerry Wong] is definitely one of them. This time, he’s looking at a UNI-T MSO2304X 300 MHz scope. The review might be a little long, but the scope — like many modern scopes — has a lot of features for measuring power, accommodating digital signals with an add-on pod, and protocol decoding.

The scope has a touchscreen and four normal inputs, plus two frequency generator outputs. You can also use a mouse or an external display. But, of course, what you really want to know is how the scope performs when reading signals.

Continue reading “[Kerry Wong] Talks (and Talks) About A 300 MHz Oscilloscope”

A Review That Asks: Do You Need A Thermal Camera?

[Maker’s Fun Duck] has a recent video review of a cheap thermal camera from a company called Kaiweets, which you can see below. It checked all of his boxes: It was standalone, handheld, cheap, and not too cheap. The question is: does it work well for the kinds of things we would do with such a camera?

That’s a tricky question, of course, because everyone’s uses are different. Considering a soldering iron. A tiny one is great for working on PCBs, but lousy for soldering large coax connectors. A soldering gun works well for that purpose, but is too much for the PCB. The same goes for thermal cameras. Some are great for, for example, finding leaky parts of houses, but might not be so great at locating defective components on a PCB.

Continue reading “A Review That Asks: Do You Need A Thermal Camera?”

Lathe Gears Make A Clock

When you think of making something using a lathe,  you usually think of turning a screw, a table leg, or a toothpick. [Uri Tuchman] had a different idea. He wanted to make a clock out of the gears used in the lathe. Can he do it? Of course, as you can see in the video below.

Along the way, he used several tools. A mill, a laser cutter, and a variety of hand tools all make appearances. There’s also plenty of CAD. Oh yeah, he uses a lathe, too.

Continue reading “Lathe Gears Make A Clock”