Electroluminescent Surfboard Looks Sharp For Night Surfing

If you’ve watched Point Break lately, you probably considered the thrill and elation involved in night surfing. If you’ve hung out with a lifeguard, though, you might instead have fretted over the dangers. In any case, it remains a popular pastime, and it’s all the more fun with a light-up surfboard like this one from [Moritz Sivers].

This project came about due to a local tradition for [Moritz], where people often surf at night to avoid the crowded breaks during the day. The build started from scratch, with a foam blank shaped into a compact  design optimized for riversurfing, with three fins set up in a thruster configuration. The back side of the board was given a coat of resin impregnated with glow-in-the-dark pigment such that the entire thing would emit an nice green glow, making it more visible at night. On the top surface, a pocket was cut in the board to host electronics for running an electroluminescent panel, complete with artwork inspired by 2001 – A Space Odyssey. The board was also outlined with EL wire to further improve the look.

[Moritz] has experimented with some neat LED surfboard designs before, too. Video after the break.

Continue reading “Electroluminescent Surfboard Looks Sharp For Night Surfing”

Building A Simple Compressed Air Cannon Is Easy

The world of warfare was revolutionized by the development of black powder, fireworks, cannons, and the like. You don’t need any of that chemical nonsense to just have fun, though, as this compressed air cannon from [OtisLiu153] demonstrates.

The build uses PVC pipes for both the barrel and the air tank. In the case of the latter, avoiding over-pressurization is key to avoiding injury, though some will say you should simply never build a PVC pipe pressure vessel at all. In this case, [OtisLiu153] strictly recommends 150 psi as a limit, which is nicely within the 280 PSI rating of the 2″ Schedule 40 PVC being used. Though, as they note, the connections in the design aren’t necessarily up to the same rating.

Off-the-shelf couplings are used to piece everything together, with the twin-reservoir design also acting as a useful shoulder mount. Charging the cannon is done via a Schrader valve, as you might find on a bike’s inner tube, and firing is achieved via a ball valve.

Of course, if you build such an air cannon yourself, just be careful with your aim. Video after the break.

Continue reading “Building A Simple Compressed Air Cannon Is Easy”

Wii-Inspired Controller Built Using Raspberry Pi Pico

We all thought Nintendo was going to change the world of gaming when it released the Wii all those years ago. In the end, it was interesting but not really fundamentally life-changing for most of us. In any case, [Sebastian] and [Gabriel] decided to build a Wii-like controller for their microcontroller class at Cornell.

The build uses a pair of Raspberry Pi Pico microcontrollers, communicating over HC-05 Bluetooth modules. One Pico acts as a controller akin to a Wiimote, while the other runs a basic game and displays it on a screen via VGA output. The controller senses motion thanks to a MPU6050 inertial measurement unit, combining both gyros and accelerometers in all three axes.

The duo demonstrate the hardware by using it as a pointer to play a simple Tic-Tac-Toe game. It’s in no way going to light up the Steam charts, but the project page does go into plenty of useful detail on how everything was implemented. If you want to create your own motion gaming controller, you could do worse than reading up on their work.

We’ve seen some other great examples of motion controls put to good use, like this VR bowling game. Video after the break.

Continue reading “Wii-Inspired Controller Built Using Raspberry Pi Pico”

Localizing Fireworks Launches With A Raspberry Pi

If you have multiple microphones in known locations, and can determine the time a sound arrives at each one, you can actually determine the location that sound is coming from. This technique is referred to as sound localization via time difference of arrival. [Kim Hendrikse] decided to put the technique to good use to track down the location of illicit fireworks launches.

The build is based on the Raspberry Pi, with [Kim] developing an “autonomous recording unit” complete with GPS module for determining their location and keeping everything time synchronized. By deploying a number of these units, spread out over some distance, it’s possible to localize loud sounds based on the time stamps they show up in the recording on each unit.

Early testing took place with an air horn and four recording units. [Kim] found that the technique works best for sounds made within the polygon.  Determining the location was achieved with a sound investigation tool called Raven Lite, developed by Cornell University. The process is very manual, involving hunting for peaks in sound files, but we’d love to see a version that automated comparing sound peaks across many disparate recording units. In any case, it worked incredibly well for [Kim] in practice. Later testing with friends and a network of six recorders spread over Limburg, Netherlands, [Kim] was later able to localize fireworks launches with an accuracy down to a few meters.

Similar techniques are used to locate gunshots, and can work well with pretty much any loud noise that’s heard over a great distance. If you’ve been using your hacker skills to do similar investigative work, don’t hesitate to let us know on the tipsline!

Beyond The Basics: Exploring More Exotic Scope Trigger Modes

Last time, we looked at some powerful trigger modes found on many modern scopes, including the Rigol DHO900 series we used as an example. Those triggers were mostly digital or, at least, threshold-based. This time, we’ll look at some more advanced analog triggers as well as a powerful digital trigger that can catch setup and hold violations. You can find the Raspberry Pi code to create the test waveforms online.

In addition to software, you’ll need to add some simple components to generate the analog waveform. In particular, pin 21 of the Pi connects to  2uF capacitor through a 10K resistor. The other side of the capacitor connects to ground. In addition, pin 22 connects directly to the capacitor, bypassing the 10K resistor. This allows us to discharge the capacitor quickly. The exact values are not especially important.

Runt Triggers

A runt pulse is one that doesn’t have the same voltage magnitude as surrounding pulses. Sometimes, this is due to a bus contention, for example. Imagine if you have some square waves that go from 0 to 5V. But, every so often, one pulse doesn’t make it to 5V. Instead, it stops at 3V.

Continue reading “Beyond The Basics: Exploring More Exotic Scope Trigger Modes”

Restoring The DC Bias

If you have a signal that passes through a capacitor or transformer, you will lose the DC portion of the signal. What do you do? If you need it, you can restore the DC bias using various techniques, as [Sam Ben-Yaakov] shows in a recent video.

These types of circuits were common in analog TVs, and, in fact, [Sam] shows the schematic of a TV to explain the need for the DC level. In that case, a vacuum tube diode does the work, but a solid state one will do the same job.

Continue reading “Restoring The DC Bias”

Australia Bans Engineered Stone, Workers Elsewhere Demand The Same

Engineered stone, also known as artificial stone or composite stone, has become a popular material in the construction and design industries due to its aesthetic appeal and durability. It’s become the go-to solution for benchtops in particular, with modern kitchens and bathrooms heavily featuring engineered stone in this way.

However, this seemingly innocuous material harbors a dark side, posing significant health risks to workers involved in its manufacturing and installation. The hazards associated with engineered stone have gone unnoticed for some time, but the toll is adding up, and calls for action grow louder. Let’s examine why engineered stone is so harmful, and explore the measures being taken across the world to curtail or even ban its use.

Continue reading “Australia Bans Engineered Stone, Workers Elsewhere Demand The Same”