Chiptunes on a Solar Panel

With its vintage sound, there’s no mistaking the unique 8-bit sound of video games from the 80s and 90s. It became so popular that eventually sparked its own genre of music known as “chiptune” for which musicians are still composing today. The music has some other qualities though, namely that it’s relatively simple from a digital standpoint. [Robots Everywhere] found that this simplicity made it perfect as a carrier for wireless power transmission.

The project acts more like a radio transmitter and receiver than it does a true wireless power transmitter, but the principle is the same. It uses a modified speaker driver and amplifier connected to a light source, rather than to a speaker. On the receiving end, there is a solar panel (essentially a large photodetector) which is wired directly to a pair of earbuds. When the chiptune is played through the amplifier, it is sent via light to the solar panel where it can be listened to in the earbuds.

The project is limited to 24,000 bytes per second which is a whole lot more useful than just beaming random audio files around your neighborhood, although that will still work. You can also use something like this to establish a long-distance serial link wirelessly, which can be the basis of a long distance communications network.

Thanks to [spiritplumber] for the tip!

Continue reading “Chiptunes on a Solar Panel”

Spice Up Your Bench With 3D Printed Dancing Springs

Not all projects are made equal. Some are designed to solve a problem while others are just for fun. Entering the ranks of the most useless machines is a project by [Vladimir Mariano] who created the 3D Printed Dancing Springs. It is a step up from 3D printing a custom slinky and will make a fine edition to any maker bench.

The project uses 3D printed coils made of transparent material that is mounted atop geared platforms and attached to a fixed frame. The gears are driven by a servo motor. The motor rotates the gears and the result is a distortion in the spring. This distortion is what the dancing is all about. To add to the effect, [Vladimir Mariano] uses RGB LEDs controlled by an ATmega32u4.

You can’t dance without music. So [Vladimir] added a MEMs microphone to pick up noise levels which are used to control the servo and lights. The code, STL files and build instructions are available on the website for you to follow along. If lights and sound are your things, you must check out the LED Illuminated Isomorphic Keyboard from the past. Continue reading “Spice Up Your Bench With 3D Printed Dancing Springs”

Introducing The Hackaday Passive Aligned Ferrite Active Quantum Crystal Nanoparticle Reference Sticker

As you know, here at Hackaday we take our audio equipment very seriously indeed. We’ve seen it all over the years and have a pretty jaded view of a lot of the audiophile products that come past our door, but once in a while along comes something that’s a bit special. That’s why today we’d like to introduce you to a new product, The Hackaday Passive Aligned Ferrite Active Quantum Crystal Nanoparticle Reference Sticker.

Here’s the problem: we’re surrounded by electrical noise. You can’t see it, you can’t touch it, and you can’t hear it, but your audio equipment can, and when that happens it will degrade your listening experience without your realising it. You might have shelled out your life savings on a top-end Hinari amp, Marc Vincent surround sound processor, Friedland carillon wire cables and a set of Saisho floor-standing speakers, but if you haven’t dealt with your system’s magnetic compatibility they’re never quite going to reach their potential and you’ll always be left wondering why your broader soundstage just doesn’t zing. You need an HPAFAQCNRS.

Continue reading “Introducing The Hackaday Passive Aligned Ferrite Active Quantum Crystal Nanoparticle Reference Sticker”

The Enchanting Power Of SDDSbot

Who doesn’t love a good robot? If you don’t — how dare you! — then this charming little scamp might just bring the hint of a smile to your face.

SDDSbot — built out of an old Sony Dynamic Digital Sound system’s reel cover — can’t do much other than turn left, right, or walk forwards on four D/C motor-controlled legs, but it does so using the power of a Pixy camera and an Arduino. The Pixy reads colour combinations that denote stop and go commands from sheets of paper, attempting to keep it in the center of its field of view as it toddles along. Once the robot gets close enough to the ‘go’ colour code, the paper’s  orientation directs the robot to steer itself left or right — the goal being the capacity to navigate a maze. While not quite there yet, it’s certainly a handful as it is.

Continue reading “The Enchanting Power Of SDDSbot”

Maglev Drummer Needs to Be Seen and Heard

Sometimes Hackaday runs in closed-loop mode: one hacker makes something, we post it, another hacker sees it and makes something else, and we post it, spiraling upward to cooler and cooler hacks. This is one of those times.

One of our favorite junk-sound-artists and musical magicians, [Gijs Gieskes], made this magnetic-levitation, rubber-band, percussive zither thing after seeing our coverage of another magnetic levitation trick. Both of them simply have a Hall sensor controlling a coil, which suspends a magnet in mid-air. It’s a dead-simple circuit that we’ll probably try out as soon as we stop typing.

But [Gijs] took the idea and ran with it. What looks like a paperclip dangles off the magnets, and flails wildly around with its tiny steel arms. These hit a zither made of rubber bands with a bamboo skewer as a bridge, pressing down on a piezo. The rest is cardboard, copper-clad, and some ingenuity. Watch it work in the video embedded below.

Continue reading “Maglev Drummer Needs to Be Seen and Heard”

Tiny Pipe Organ Needs Tiny Church

There are a lot of unusual listings on eBay. If you’re wondering why someone would have a need for shredded cash, or a switchblade comb, or some “unicorn meat” (whatever that is), we’re honestly wondering the same thing. Sometimes, though, a listing that most people would consider bizarre finds its way to the workbench of someone with a little imagination. That was the case when [tinkartank] found three pipe organ pipes on eBay, bought them, and then built his own drivers.

The pipes have pitches of C, D, and F# (which make, as far we can tell, a C add9 flat5 no3 chord). [tinkartank] started by firing up the CNC machine and creating an enclosure to mount the pipes to. He added a church-like embellishment to the front window, and then started working on the controls for the pipes. Each pipe has its own fan, each salvaged from a hot air gun. The three are controlled with an Arduino. [tinkartank] notes that the fan noise is audible over the pipes, but there does seem to be an adequate amount of air going to each pipe.

This project is a good start towards a fully functional organ, provided [tinkartank] gets lucky enough to find the rest of the pipes from the organ. He’s already dreaming about building a full-sized organ of sorts, but in the meantime it might be interesting to use his existing pipes to build something from Myst.

A Tech That Didn’t Make It: Sound On Stainless Steel Wire

For a brief period in the 1940’s it might have been possible for a young enamored soul to hand his hopeful a romantic mix-spool of wire. This was right before the magnetic tape recorder and its derivatives came into full swing and dominated the industry thoroughly until the advent of the compact disk and under a hundred kilogram hard disk drives. [Techmoan] tells us all about it in this video.

The device works as one would expect, but it still sounds a little crazy. Take a ridiculously long spool of steel wire the size of a human hair(a 1 hour spool was 2.2km of wire), wind that through a recording head at high speed, magnetize the wire, and spool it onto a receiving spool.

If you’re really lucky the wire won’t dramatically break causing an irreversible tangle of wire. At that point you can reverse the process and hear the recorded sound. As [Techmoan] shows, the sound can best be described as… almost okay. Considering that its chief competition at the time was sound carved into expensive aluminum acetate plates, this wasn’t the worst.

The wire recorder lived on for a few more years in niche applications such as airplane black boxes. It finally died, but it does sound like a really fun couple-of-weekends project to try and build one. Make sure and take good pictures and send it in if any of you do.

Continue reading “A Tech That Didn’t Make It: Sound On Stainless Steel Wire”