Turning Lego Into A Groove Machine

lego

Last weekend wasn’t just about Maker Faire; in Stockholm there was another DIY festival celebrating the protocols that make electronic music possible. It’s MIDI Hack 2014, and [Kristian], [Michael], [Bram], and [Tobias] put together something really cool: a Lego sequencer

The system is set up on a translucent Lego base plate, suspended above a webcam that feeds into some OpenCV and Python goodness. From there, data is sent to Native Instruments Maschine. There’s a step sequencer using normal Lego bricks, a fader controlling beat delay, and a rotary encoder for reverb.

Despite being limited to studs and pegs, the short demo in the video below actually sounds good, with a lot of precision found in the faders and block-based rotary encoder. [Kristian] will be putting up the code and a few more details shortly. Hopefully there will be enough information to use different colored blocks in the step sequencer part of the build for different notes.

Continue reading “Turning Lego Into A Groove Machine”

The Solafide Forbes Nash Organ

analogue

A few years ago, [Chad] wanted to build a musical instrument. Not just any musical instrument, mind you, but one with just intonation. Where modern western music maps 12 semitones onto a logarithmic scale per octave, just temperament uses ratios or fractions to represent notes on a scale. For formal, academic music, it’s quite odd especially if you’re building an analog synth for this temperament. In a remarkable three-part write up (parts one, two, and three), [Chad] goes over the creation of this extremely strange musical instrument.

The idea was for this synth to produce sine waves for each of the tones on the just intonated scale. [Chad]’s initial experiments led him down the path of using strings and magnetic pickups to produce these sine waves. These ideas were initially discarded for producing sine waves electronically on dozens of different homemade PCBs, one for each tone.

The keys are an extremely interesting design, working on the principle of light from an LED shining on a photodetector, blocked by a shutter on a spring-loaded key made on a laser cutter. The glyphs on the keys seen above actually have meaning; each one describes the ratio of the interval that key plays, encoded in some schema that isn’t quite clear.

What does it sound like? There’s three videos below, but because this synth isn’t tuned to the scale you’re used to, it doesn’t sound like anything else you’ve heard before.

Continue reading “The Solafide Forbes Nash Organ”

Bumpy, The Beautiful DIY MP3 Player

OLYMPUS DIGITAL CAMERA

[Matt]’s been working on a small hombrew MP3 player, and although it’s not much more useful than an iPod Shuffle, sometimes that’s all you need. Besides, it turned out to be a beautiful project, completely custom, and a great example of what a high resolution 3D printer can do with an enclosure design.

Inside Bumpy is an ATMega32u4 with a VS1003 MP3 codec IC. The device is powered by a 1000mAh lithium battery, and the user interface is an exercise in simplicity; a single click/scroll wheel changes the volume, toggles play and pause, and selects the next or previous track. Eight LEDs mounted in the center of the board glow through the case for status, volume, and interface feedback.

By far the most impressive part of Bumpy is the case. It was printed at [Matt]’s place of employment – Formlabs – in white UV curing resin. The pictures show a surface finish that would be difficult to replicated on a squirting plastic style 3D printer, with a textured, bumpy surface that inspired the name.

Eerie Robotic Instruments Make Use Of Servos And Solenoids

Turbo-gusli

Self-playing pianos are so last year. How about a robotic acoustic-gusli?

[Dmitry Morozov] calls it the Turbo-Gusli or Gusli-Samogudy. A Gusli is perhaps the oldest Russian multi-stringed instrument, which resembles a harp and whose exact history is not quite known. Add Samogudy to the name and you’ve got a “self-playing Gusli”.

The eerie sounding music is produced by six individual servo motors, a regular DC motor, a stepper motor, three solenoids, a handful of springs, and 38 strings. It’s all controlled by two Arduino Unos, with the software written in Pure Data, an open source visual programming language.

He’s made several videos of the exhibit, including a performance that sends shivers down our spines — stick around after the break for a listen!

Continue reading “Eerie Robotic Instruments Make Use Of Servos And Solenoids”

Have An Unused DIY Instrument? Send It On Tour With [Imogen Heap]

goofys a dog and plutos a dog but goofy can talk whaaa

[Imogen Heap] is well-known for performing with DIY and cobbled-together instruments, and now she’s teaming up with another famous DIY instrument musician for a world tour. That’s the cool part, now here’s the awesome part: they want to take your DIY musical instrument on tour for a scrapyard symphony.

Both [Imogen] and [Leafcutter] are semi-regular Hackaday features, with [Leafcutter] building hydrophones and [Imogen] doing some crazy stuff turning gestures into music. They’re both known for their strange and esoteric sounds that sends Rolling Stone writers scrambling for a thesaurus, and now they want your disused or discarded music machines to use live on their world tour.

The team is looking for video submissions of any musical creatures you’d like to send around the world. The only real guideline on what they’re looking for is, ‘the weirder the better’, with an apparent slight emphasis on physical machines over the purely electronic.

Video of the duo below.

Continue reading “Have An Unused DIY Instrument? Send It On Tour With [Imogen Heap]”

Block Noise, Listen To Music

Noise Blocking headphones made from industrial earmuffs

Noise-Cancelling Headphones actively cancel external sounds so the listener can hear their media without distraction. They do this by taking external sound waves from an on-board microphone, inverting the audio signal and mixing that with the media audio. The outside sounds and their inverses cancel each other out before reaching the listener’s ears. There is one downside to these types of noise-cancelling headphones, they are very expensive.

[Mike] works in a wood shop and didn’t want to pony up the hundreds of dollars it would cost for a pair of noise-cancelling headphones, let alone having such an expensive electronic device in a dusty workshop. The solution? Make some headphones that will block out the noise but still allow the comfortable listening of music. This project is simple but effective; inexpensive headphones taken apart and installed in a pair of Industrial Ear Muffs. If you’d like to make your own, [Mike] gives step by step on the above link.

Continue reading “Block Noise, Listen To Music”

Restoring A Violin With 3D Printed Parts

Violin

 

Every family has an heirloom. It might be a watch, a book, or a stuffed pet. [Mike’s] family heirloom was an antique violin. Well, not an entire violin. This particular violin consisted of a detached neck, a body, and one tuning peg. As far as [Mike] knows, no living member of his family has heard it played.  [Mike] decided to restore it to playable condition.

[Mike’s] violin had been brought over to America when his family emigrated from France. The primary reason it has been saved is because it bears the name Stradivarius.  Stradivarius copies and tributes are plentiful in the wild. Many of the copies are now antiques and good playing instruments in their own right, though not nearly as revered as the real thing. [Mike’s] first step was to determine if his violin was a real Strad, or a copy. Luckily he was able to get in touch with the caretaker of a real Strad in Milwaukee. It turns out that the label on his violin marks it as a copy. According to the caretaker, genuine Stradivarius instruments were signed directly on the wood. The caretaker was further able to identify that [Mike’s] violin was about 100 years old, and a relatively cheap model for the time.

While it wasn’t a real Stradivarius, the violin was still an important part of [Mike’s] family history, and deserved to be played again. Rather than re-create the missing parts to perfectly match the originals, [Mike] decided to use the resources of the Milwaukee Makerspace to create 3D printed parts.

Similar violin parts were scanned at the Makerspace. The final .stl files were sent to Shapeways for printing. [Mike] sent all the parts to a luthier for final fitting and assembly. [Mike’s] family heirloom is no longer an item to be hidden away, but a living breathing instrument for a new generation to enjoy.