Tilt-Rotor Plane Needs Flight Controller Hack to Get Airborne

Part of the charm of quadcopters is the challenge that building and flying them presents. In need of complex sensors and computational power to just get off the ground and under tremendous stresses thanks to their massively powerful motors, they often seem only barely controlled in flight. Despite these challenges, quadcopter flight has been reduced to practice in many ways, leaving hobbyists in search of another challenge.

[Tom Stanton] is scratching his creative itch with this radio-controlled tilt-rotor airplane that presents some unique problems and opportunities. Tilt-rotor planes are, as the name implies, able to swivel their propellors and transition them from providing forward thrust to providing verticle lift. With the rotors providing lift, the aircraft is able to hover and perform vertical take-off and landing (VTOL); switched to thrust mode, wings provide the lift for horizontal flight.

[Tom]’s realization of this design seems simple – a spar running through the wing holding BLDC motors and props is swiveled through 90° by a servo to transition the aircraft. Standard control surfaces on the wings and tail take care of horizontal flight. Actually getting an off-the-shelf flight controller to deal with the transitions was tricky. [Tom] ended up adding an Arduino to intercept the PWM signals the flight controller normally sends directly to the servos and speed controls to provide the coordination needed for a smooth transition. Full details in the video below, and some test flights which show that an RC VTOL is anything but a beginner’s plane.

[Tom] is proving himself to be quite the Renaissance man these days. Between air-powered piston engines, over-balance trebuchets, and popping the perfect wheelie, he seems to have covered all the bases and done his best to keep our tip line stocked.

Continue reading “Tilt-Rotor Plane Needs Flight Controller Hack to Get Airborne”

Hackaday Links: October 28, 2018

Steve Jobs was actually a good designer and CEO. This is a statement that would have been met with derision in 2010, with stories of a ‘reality distortion field’. We’re coming up on a decade in the post-Jobs era, and if there’s one thing the last seven or eight years can tell us, it’s that Jobs really, really knew how to make stuff people wanted. Apart from the iPhone, OS X, and the late 90s redesign of their desktops, the most impressive thing Jobs ever did was NeXT. Now there’s book that describes the minutia of all NeXT hardware. Thanks to the Adafruit blog for pointing this one out.

Speaking of Apple, here’s something else that’s probably not worth your time. It’s a highly exclusive leak of upcoming Apple hardware that’s sure to change everything you know about tech. Really, it’s a floating hockey puck branded with the Apple logo. No idea what this is, but somebody is getting some sweet, sweet YouTube ad revenue from this.

A few years ago, [Tom Stanton] built an electric VTOL plane. It looked pretty much like any other foam board airplane you’d find, except there were motors on the wingtips a lá an Osprey. Now, he’s massively improving this VTOL plane. The new build features a 3D printed fuselage and 3D printed wing ribs to give this plane a proper airfoil. Despite being mostly 3D printed, this VTOL plane weighs less than half of the first version. Also, a reminder: VTOL planes (or really anything that generates lift from going forward) are the future of small unmanned aerial craft. Better get hip to this now.

Next weekend is the Hackaday Superconference, and you know we’re going to have an awesome hardware badge. It’s a badge, that’s a computer, and has a keyboard. What more could you want? How about an expansion header? Yeah, we’ve got a way to add a shift register and 8 LEDs to the badge. From there, you can do just about everything. Who’s going to bring an old parallel port printer?

Delta Clipper: A 1990s Reusable Single-Stage To Orbit Spaceship Prototype

With all the talk of SpaceX and Blue Origin sending rockets to orbit and vertically landing part or all of them back on Earth for reuse you’d think that they were the first to try it. Nothing can be further from the truth. Back in the 1990s, a small team backed by McDonnell Douglas and the US government vertically launched and landed versions of a rocket called the Delta Clipper. It didn’t go to orbit but it did perform some extraordinary feats.

Origin Of The Delta Clipper

DC-XAThe Delta Clipper was an unmanned demonstrator launch vehicle flown from 1993 to 1996 for testing vertical takeoff and landing (VTOL) single-stage to orbit (SSTO) technology. For anyone who watched SpaceX testing VTOL with its Grasshopper vehicle in 2012/13, the Delta Clipper’s maneuvers would look very familiar.

Initially, it was funded by the Strategic Defence Initiative Organization (SDIO). Many may remember SDI as “Star Wars”, the proposed defence system against ballistic missiles which had political traction during the 1980s up to the end of the Cold War.

Ultimately, the SDIO wanted a suborbital recoverable rocket capable of carrying a 3,000 lb payload to an altitude of 284 miles (457 km), which is around the altitude of the International Space Station. It also had to return with a soft landing to a precise location and be able to fly again in three to seven days. Part of the goal was to have a means of rapidly replacing military satellites should there be a national emergency.

The plan was to start with an “X” subscale vehicle which would demonstrate vertical takeoff and landing and do so again in three to seven days. A “Y” orbital prototype would follow that. In August 1991, McDonnell-Douglas won the contract for the “X” version and the possible future “Y” one. The following is the story of that vehicle and its amazing feats.

Continue reading “Delta Clipper: A 1990s Reusable Single-Stage To Orbit Spaceship Prototype”

Generate Random Numbers The Hard Way

Your job is to create a random number generator.

Your device starts with a speaker and a membrane. On this membrane will sit a handful of small, marble-size copper balls. An audio source feeds the speaker and causes the balls to bounce to and fro. If a ball bounces high enough, it will gain the opportunity to travel down one of seven copper tubes. Optical sensors in each of the tubes detect the ball and feed data to an Ardunio Mega. When the ball reaches the end of the tube, a robotic hand will take the ball and put it back on the speaker membrane. The magic happens when we write an algorithm such that the audio output for the speaker is a function of how many balls fall down the pipes.

The above is a rough description of [::vtol::]’s art piece: kinetic random number generator. We’re pretty sure that there are easier ways to get some non-determinstic bits, but there may be none more fun to watch.

[::vtol::] is a frequent flyer here on Hackaday Airlines. Where else would you showcase your 8-bit Game Boy Photo Gun or your brainwave-activated ferrofluid monster bath? Would it shock you to find out that we’ve even covered another kinetic random number generator of his?  Fun stuff!

Building Homebrew VTOL Rockets

No one can deny what SpaceX and Blue Origin are doing is a feat of technological wizardry. Building a rocket that takes off vertically, goes into space, and lands back on the pad is an astonishing technical achievement that is literally rocket science. However, both SpaceX and Blue Origin have a few things going for them. They have money, first of all. They’re building big rockets, so there’s a nice mass to thrust cube law efficiency bump. They’re using liquid fueled engines that can be throttled.

[Joe Barnard] isn’t working with the same constraints SpaceX and Blue Origin have. He’s still building a rocket that can take off and land vertically, but he’s doing it the hard way. He’s building VTOL model rockets. Most of the parts are 3D printed. And he’s using solid motors you can buy at a hobby shop. This is the hard way of doing things, and [Joe] is seeing some limited success with his designs.

While the rockets coming out of Barnard Propulsion Systems look like models of SpaceX’s test vehicles, there’s a lot more here than looks. [Joe] is using a thrust vectoring system — basically mounting the Estes motor in a gimbal attached to a pair of servos. This allows the rockets to fly straight up without fins or even the launch rod used to get the rocket up to speed in the first few millseconds of flight. This is active stabilization of a model rocket, with the inevitable comments of ITAR violations following soon afterward.

Taking off vertically is one thing, but [Joe] is also trying to land his rockets vertically. Each rocket he’s built has a second Estes motor used only for landing. During descent, the onboard microcontroller calculates the speed, altitude, and determines if it’s safe to attempt a vertical landing. If the second motor has sufficient impulse to make velocity and altitude equal zero at the same time, the landing legs deploy and the rocket hopefully makes a soft touchdown in the grass.

While [Joe] hasn’t quite managed to pull off a vertical takeoff and landing with black powder motors quite yet, he’s documenting and livestreaming all of his attempts. You can check out the latest one from a week ago below.

Continue reading “Building Homebrew VTOL Rockets”

Tape-Head Robot Listens to the Floor

We were just starting to wonder exactly what we’re going to do with our old collection of cassette tapes, and then along comes art robotics to the rescue!

Russian tech artist [::vtol::] came up with another unique device to make us smile. This time, it’s a small remote-controlled, two-wheeled robot. It could almost be a line follower, but instead of detecting the cassette tapes that criss-cross over the floor, it plays whatever it passes by, using two spring-mounted tape heads. Check it out in action in the video below.

Some of the tapes are audiobooks by sci-fi author [Stanislaw Lem] (whom we recommend!), while others are just found tapes. Want to find out what’s on them? Just drive.

Continue reading “Tape-Head Robot Listens to the Floor”

Poetic SSIDs

Artists see the same world that the rest of us do. They just see it from a little bit off to the left. Where you see picking an ESSID for your router as being a hassle, or an opportunity to insult your neighbors, [Dmitry], alias [::vtol::] sees a poetry-delivery mechanism.

Based on ESP8266 units, each “poet” has a battery and a switch. Turn it on and it changes its SSID once every ten seconds, feeding everyone who’s listening the next line of a poem. You can’t connect to the network, but you can occasionally hit refresh on your WiFi scanner and read along.

Since they’re so cheap to build, [::vtol::] sees them almost as if they were poetry-throwies. You could easily afford to leave a few around the city, guerilla-style, broadcasting your (slow) message one SSID at a time. We love the video clips (inlined below) of him riding the subway with the device on.

Continue reading “Poetic SSIDs”