Wii Nunchuck-Controlled Tetris On A Raspberry Pi

tetris

[Vince] teaches an Embedded Systems class at the University of Maine, and some of his students were working on video games for their finals. He decided to “test the hardware” that the students were using by putting two 8×8 displays, one 4×7 segment display, and a Wii Nunchuck on the I2C bus. He then wrote a version of Tetris that accepts trigger presses and accelerometer input for control. Judging by the video (embedded after the break), the Raspberry Pi runs the game without issue. The bus is, of course, more than capable of handling everything.

Unfortunately, [Vincent] had some trouble getting the controls just right. Sometimes dropping a piece can cause the next to drop too quickly, and the accelerometer control seems a bit too sensitive. We imagine using the joystick for rotation and adding some strategic pauses in the game could help. He graciously released the source code for the project, so maybe we’ll see some embracing and extending in the near future.

Continue reading “Wii Nunchuck-Controlled Tetris On A Raspberry Pi”

Raspi Notifies You Of Space Station Passes

ISS

A few months years ago, [Liam] funded a Kickstarter for a small desk toy that would tell him when the International Space Station was overhead. [Liam] got a little tired of waiting, so he decided to build his own with a Raspberry Pi and an astronomical computation Python library.

The impressive part of this build is computing where an orbiting object is in the sky given the ISS’ orbital elements. For this, [Liam] is using PiEphem, a library that can compute the positions of the sun, moon, planets, asteroids, and Earth-orbiting satellites given a location and a time. Since the ISS orbital elements change every so often, his software is set up to download an update every week or so.

[Liam] developed a few versions of his space station detector, each with a different display. The simplest uses a few LEDs, either through a LedBorg, Blinkstick, or PiGlow to serve as a notification of when the ISS is overhead. Two more complicated versions use an LCD display or LED matrix to signal when the next ISS pass will occur.

Video demo below.

Continue reading “Raspi Notifies You Of Space Station Passes”

Real Life Sonic Screwdriver For Home Automation

sonic

Any Doctor Who fans out there? [Pat] just sent us his project on home automation… using a Sonic Screwdriver!

Ever since he pre-ordered his Raspberry Pi at the beginning of February 2012, he knew he wanted to try his hand at home automation. The easy way was to use X10 outlets, but at $20+ an outlet, it’s not that affordable. Instead, he managed to find a rather cheap system on Amazon — RF controlled outlets. They only cost about $35 for a 5-pack!

It’s a very basic system: five outlets with five buttons on the remote. All he had to do was wire up the Raspberry Pi to simulate the button presses by setting the GPIO pins high, and presto, a simple but effective home automation setup.

This is where it starts to get fun. Unfortunately, unlike a real Time Lord, [Pat] didn’t build his sonic from scratch. Instead, he found a universal remote control — styled after [Smith]’s sonic. Add another RF receiver to the Pi, a web-based interface to extend the range, and bam, you’ve got one geeky, but awesome, home automation setup.

Stick around after the break to see it in action!

Continue reading “Real Life Sonic Screwdriver For Home Automation”

Internet-Enabling A Lamp With The Raspberry Pi

lampcontrol

[Jack] sent in his writeup for internet enabling a home lamp. While we will certainly have some comments saying this is too simple, it does a great job of breaking things down to the basics. For those that aren’t confident in their electronic skills, this is an easy hack to a commercial device that greatly expands it’s capabilities. [Jack] started with a cheap wireless outlet controller. By opening the remote and wiring each switch to a 2N222A transistor, you can very easily control the remote from the GPIO pins on the Raspberry Pi. In [Jack’s] case, he set up a web page using Flask that allows quick on/off control.

Of course, this method can be used in any number of instances where you have a wireless controller, from small lamps to garage doors. Given it’s simplicity, anyone can do it with even basic skills. If you’re a beginner who’s been itching to do some home automation, follow [Jack’s] writeup and check an item off your todo list!

Solar Powered, Tweeting Bird Feeder

feeder-v3

The folks at Manifold created their version of a tweeting bird feeder, and [Chad] wrote up a behind-the-scenes of their design. The goal is something we’ve seen before: When the bird lands to eat, take a picture and tweet it. In this case, they had some corporate money behind the project, and that allowed them to buy a nice solar panel and battery pack to keep the whole thing running.

The write-up is full of the experimentation that we all enjoy: They found that detecting motion through the camera feed wasn’t reliable, so they switched over to a PIR sensor. The PIR sensor was too sensitive to heat changes during the day, so they went with an ultrasonic rangefinder, but wind caused issues there. They finally came up with a solution which involves using two sensors to confirm motion. This seems a bit more complicated than it needs to be, but it works well for them.

We think it is nice to see companies getting behind quirky projects. All told, they spent dozens of hours on this, and they chose to give all of their findings back to the community in the form of thorough explanations and project diagrams. It would be nice to see more of this.

The weather in Colorado hasn’t been the best lately, so the birdhouse hasn’t been tweeting for a while. In our experience, a project that’s turned off is in the dangerous position of being scavenged for parts. Hopefully that isn’t the case here, and we will see it back in action when Spring starts.

Raspi AC And Blinds Controller

raspiBlindsACController

[Chris’s] bedroom has a unique setup with an air conditioning unit perched on the wall next to the top of the blinds that cover his window. Normally, to open the blinds he had to tug on a cord and operating the AC meant fiddling with a remote control. Not anymore. Now [Chris] has an all-in-one Raspberry Pi-based solution to drive both.

The build uses a stepper motor salvaged from a printer to directly drive the blinds, with a familiar-looking Easy Driver connecting it to the Pi. The motor spins the blinds’ mechanism either open or closed, though at a modest pace that’s slow enough to provide the needed torque. [Chris] added an IR diode plugged into the Pi that imitates the air conditioning unit’s remote control, and simply pointed it directly at the unit’s receiver. An inexpensive WiFi dongle gets the Pi onto the network, allowing [Chris] to interact via a custom web interface. The interface itself not only provides a couple of clickable buttons, but a cleverly-designed status image indicating the position of the blinds.

Make sure you see the video below for a demonstration and for more details on the build. This is one of the better examples of home automation devices we’ve seen recently, especially considering it actually fits the “autonomous” implications discussed in our Ask Hackaday post from a few months back—although a relatively simple automation, [Chris’s] interface does allow for operating both the blinds and the AC on a preselected schedule.

Continue reading “Raspi AC And Blinds Controller”

A Raspberry Pi Arcade Stick

rpiArcadeStick

There are plenty of Raspberry Pi arcade builds out there, but rarely do we come across something as sleek as [Jochen Zurborg’s] RasPi Arcade Stick. The build combines everything you’d expect from other RasPi arcade projects, but manages to pack everything into the form factor of a portable stick modeled on the Neo Geo 4’s button layout. It may not be as small as the tiny MAME cabinet from last year, but it definitely delivers a more authentic arcade experience.

[Jochen] had previously developed an add-on PCB for the Pi called the PiJamma, which simplifies connections from the RasPi’s GPIOs by providing a JAMMA interface for the controller(s). The Pi and the PiJamma sit inside a custom-made acrylic enclosure and hook up to the buttons and joystick above. Rather than try to fit the Pi directly against a side panel for access to the various outputs, [Jochen] rerouted the USB, HDMI, and headphone jacks and arranged them into a tidy row on the back side of the box. The top piece of the enclosure consists of a sheet of aluminum wrapped in custom artwork, with an additional sheet of acrylic on top for protection. [Jochen] also modified each of the arcade buttons to include LEDs that illuminate the buttons’ acrylic holder, and the case itself appears to have been cut into slats on each side to provide better ventilation.

Check out his project blog for further details and for a huge gallery of progress photos, then see a quick video of the RasPi Arcade Stick after the break.

Continue reading “A Raspberry Pi Arcade Stick”