Reverse-Engineering A Shahed-136 Drone Air Data Computer

Top of the air data computer module, with pressure sensors, RS232 driver and DC-DC converter visible. (Credit: Le Labo de Michel, YouTube)

An air data computer (ADC) is a crucial part of an avionics package that can calculate the altitude, vertical speed, air speed and more from pressure (via pitot tubes) and temperature inputs. When your airplane is a one-way attack drone like Iran’s Shahed-136, you obviously need an ADC as well, but have to focus on making it both cheap and circumvent a myriad of sanctions. As [Michel] recently found out while reverse-engineering one of these ADCs. Courtesy of the Russo-Ukrainian war, hundreds of these Shahed drones are being destroyed every month, with some making it back down again intact enough for some parts to end up on EBay.

The overall design as captured in the schematic is rather straightforward, with the component choice probably being the most notable, as it uses an STM32G071 MCU and Analog Devices ADM3232 RS-232 driver, in addition to the two pressure sensors (by Silicon Microstructures Inc., now owned by TE). The DC-DC converter is a Mornsun URB24055-6WR3.

With the board in working condition, [Michel] hooks it up to a test setup to see the output on the serial interface when applying different pressures to the pressure sensor inputs. This results in a lot of ASCII data being output, all containing different values that were calculated by the firmware on the STM32 MCU. In the drone this data would then be used by the flight computer to make adjustments. Overall it’s a rather basic design that doesn’t seem to have a dedicated temperature sensor either, though [Michel] is still analyzing some details. A firmware dump would of course be rather fascinating as well.

Continue reading “Reverse-Engineering A Shahed-136 Drone Air Data Computer”

Looking At Standard-Cell Design In The Pentium Processor

Die photo of the Intel Pentium processor with standard cells highlighted in red. The edges of the chip suffered some damage when I removed the metal layers. (Credit: Ken Shirriff)
Die photo of the Intel Pentium processor with standard cells highlighted in red. The edges of the chip suffered some damage when I removed the metal layers. (Credit: Ken Shirriff)

Whereas the CPUs and similar ASICs of the 1970s had their transistors laid out manually, with the move from LSI to VLSI, it became necessary to optimize the process of laying out the transistors and the metal interconnects between them. This resulted in the development of standard-cells: effectively batches of transistors with each a specific function that could be chained together. First simple and then more advanced auto-routing algorithms handled the placement and routing of these standard elements, leading to dies with easily recognizable structures under an optical microscope. Case in point an original (P54C) Intel Pentium, which [Ken Shirriff] took an in-depth look at.

Using a by now almost unimaginably large 600 nm process, the individual elements of these standard cells including their PMOS and NMOS components within the BiCMOS process can be readily identified and their structure reverse-engineered. What’s interesting about BiCMOS compared to CMOS is that the former allows for the use of bipolar junction transistors, which offer a range of speed, gain and output impedance advantages that are beneficial for some part of a CPU compared to CMOS. Over time BiCMOS’ advantages became less pronounced and was eventually abandoned.

All in all, this glimpse at the internals of a Pentium processor provides a fascinating snapshot of high-end Intel semiconductor prowess in the early 1990s.

(Top image: A D flip-flop in the Pentium. Credit: [Ken Shirriff] )

Hackable Ham Radio Gives Up Its Mechanical Secrets

Reverse-engineered schematics are de rigeur around these parts, largely because they’re often the key to very cool hardware hacks. We don’t get to see many mechanical reverse-engineering efforts, though, which is a pity because electronic hacks often literally don’t stand on their own. That’s why these reverse-engineered mechanical diagrams of the Quansheng UV-K5 portable amateur radio transceiver really caught our eye.

Part of the reason for the dearth of mechanical diagrams for devices, even one as electrically and computationally hackable as the UV-K5, is that mechanical diagrams are a lot less abstract than a schematic or even firmware. Luckily, this fact didn’t daunt [mdlougheed] from putting a stripped-down UV-K5 under a camera for a series of images to gather the raw data needed by photogrammetry package RealityCapture. The point cloud was thoughtfully scaled to match the dimensions of the radio’s reverse-engineered PC board, so the two models can work together.

The results are pretty impressive, especially for a first effort, and should make electromechanical modifications to the radio all the easier to accomplish. Hats off to [mdlougheed] for the good work, and let the mechanical hacks begin.

Hacking A Brother Label Maker: Is Your CUPS Half Empty Or Half Full?

On the one hand, we were impressed that a tiny Brother label maker actually uses CUPS to support printing. Like [Sdomi], we were less than impressed at how old a copy it was using – – 1.6.1. Of course, [Sdomi] managed to gain access to the OS and set things up the right way, and we get an over-the-shoulder view.

It wasn’t just the old copy of CUPS, either. The setup page was very dated and while that’s just cosmetic, it still strikes a nerve. The Linux kernel in use was also super old. Luckily, the URLs looked like good candidates for command injection.

Continue reading “Hacking A Brother Label Maker: Is Your CUPS Half Empty Or Half Full?”

Smartwatch Snitches On Itself And Enables Reverse Engineering

If something has a “smart” in its name, you know that it’s talking to someone else, and the topic of conversation is probably you. You may or may not like that, but that’s part of the deal when you buy these things. But with some smarts of your own, you might be able to make that widget talk to you rather than about you.

Such an opportunity presented itself to [Benjamen Lim] when a bunch of brand X smartwatches came his way. Without any documentation to guide him, [Benjamen] started with an inspection, which revealed a screen of debug info that included a mysterious IP address and port. Tearing one of the watches apart — a significant advantage to having multiple units to work with — revealed little other than an nRF52832 microcontroller along with WiFi and cellular chips. But the luckiest find was JTAG pins connected to pads on the watch face that mate with its charging cradle. That meant talking to the chip was only a spliced USB cable away.

Once he could connect to the watch, [Benjamen] was able to dump the firmware and fire up Ghidra. He decided to focus on the IP address the watch seemed fixated on, reasoning that it might be the address of an update server, and that patching the firmware with a different address could be handy. He couldn’t find the IP as a string in the firmware, but he did manage to find a sprintf-like format string for IP addresses, which led him to a likely memory location. Sure enough, the IP and port were right there, so he wrote a script to change the address to a server he had the keys for and flashed the watch.

So the score stands at [Benjamen] 1, smartwatch 0. It’s not clear what the goal of all this was, but we’d love to see if he comes up with something cool for these widgets. Even if there’s nothing else, it was a cool lesson in reverse engineering.

Showing the modchip installed into a powered up Xbox, most of the board space taken up by a small Pi Pico board. A wire taps into the motherboard, and a blue LED on the modchip is lit up.

An Open XBOX Modchip Enters The Scene

If you’ve ever bought a modchip that adds features to your game console, you might have noticed sanded-off IC markings, epoxy blobs, or just obscure chips with unknown source code. It’s ironic – these modchips are a shining example of hacking, and yet they don’t represent hacking culture one bit. Usually, they are more of a black box than the console they’re tapping into. This problem has plagued the original XBOX hacking community, having them rely on inconsistent suppliers of obscure boards that would regularly fall off the radar as each crucial part went to end of life. Now, a group of hackers have come up with a solution, and [Macho Nacho Productions] on YouTube tells us its story – it’s an open-source modchip with an open firmware, ModXO.

Like many modern modchips and adapters, ModXO is based on an RP2040, and it’s got a lot of potential – it already works for feeding a BIOS to your console, it’s quite easy to install, and it’s only going to get better. [Macho Nacho Productions] shows us the modchip install process in the video, tells us about the hackers involved, and gives us a sneak peek at the upcoming features, including, possibly, support for the Prometheos project that equips your Xbox with an entire service menu. Plus, with open-source firmware and hardware, you can add tons more flashy and useful stuff, like small LCD/OLED screens for status display and LED strips of all sorts!

If you’re looking to add a modchip to your OG XBOX, it looks like the proprietary options aren’t much worth considering anymore. XBOX hacking has a strong community behind it for historical reasons and has spawned entire projects like XBMC that outgrew the community. There’s even an amazing book about how its security got hacked. If you would like to read it, it’s free and worth your time. As for open-source modchips, they rule, and it’s not the first one we see [Macho Nacho Productions] tell us about – here’s an open GameCube modchip that shook the scene, also with a RP2040!

Continue reading “An Open XBOX Modchip Enters The Scene”

A graphic representing the features of a Sleep Number smart bed, showing individually controlled heated zones

Root Your Sleep Number Smart Bed, Discover It Phoning Home

Did you know you can get a “smart bed” that tracks your sleep, breathing, heart rate, and even regulates the temperature of the mattress? No? Well, you can get root access to one, too, as [Dillan] shows, and if you’re lucky, find a phone-home backdoor-like connection. The backstory to this hack is pretty interesting, too!

You see, a Sleep Number bed requires a network connection for its smart features, with no local option offered. Not to worry — [Dillan] wrote a Homebridge plugin that’d talk the cloud API, so you could at least meaningfully work with the bed data. However, the plugin got popular, Sleep Number didn’t expect the API to be that popular. When they discovered the plugin, they asked that it be shut down. Tech-inclined customers are not to be discouraged, of course.

Continue reading “Root Your Sleep Number Smart Bed, Discover It Phoning Home”