Dual-Arm Mobile Bot Built On IKEA Cart Costs Hundreds, Not Thousands

There are many incredible open-source robotic arm projects out there, but there’s a dearth of affordable, stable, and mobile robotic platforms with arms. That’s where XLeRobot comes in. It builds on the fantastic LeRobot framework to make a unit that can be trained for autonomous tasks via machine learning, as well as operated remotely.

XLeRobot, designed by [Vector Wang], has a pretty clever design that makes optimal use of easy to obtain parts. In addition to the mostly 3D-printed hardware, it uses an IKEA cart with stacked bin-like shelves as its main frame.

The top bin holds dual arms and a central stalk with a “head”. There’s still room left in that top bin, a handy feature that gives the robot a place to stow or carry objects.

The bottom of the cart gets the three-wheeled motion unit. Three omnidirectional wheels provide a stable base while also allowing the robot to propel itself in any direction and turn on a dime. The motion unit bolts to the bottom, but because the IKEA cart’s shelf bottoms are a metal mesh, no drilling is required.

It’s all very tidy, and results in a mobile robotics platform that is cheap enough for most hobbyists to afford, while being big enough to navigate indoor environments and do useful tasks.

Continue reading “Dual-Arm Mobile Bot Built On IKEA Cart Costs Hundreds, Not Thousands”

Does 3D-Printed Foam Make Good Custom Tires?

Wouldn’t it be nice to 3D print an entire custom tire for small robots? It sure would, so [Angus] of [Maker’s Muse] decided to investigate whether nifty new filaments like expanding TPU offer anything new in this area. He did more than just print out a variety of smooth tires; he tested each with a motorized platform attached to a load cell, driving on a dusty sheet of MDF to simulate the average shop floor, or ant weight combat robot arena.

Why bother making your own wheels? As [Angus] points out, when one is designing their own robots from scratch, it’s actually quite difficult to find something off the shelf that is just the right size. And even if one does find a wheel that is just right, there’s still the matter of fitting it to the shaft. Things would be so much easier if one could simply 3D print both wheel and tire in a material that performs well.

Like TPU, but squishier.

Here’s what he found: Siraya Tech’s TPU air filament (about 70A on the Shore hardness scale) performed the best. This is TPU plus a heat-activated additive that foams up during extrusion, resulting in a flexible print that looks and feels more like foam than usual TPU. It makes a promising tire that performs as well as it looks. Another expanding filament, PEBA air (also from Siraya Tech) didn’t look or perform as well, but was roughly in the same ballpark.

Both performed better than the classic DIY options of 3D-printed plain TPU, or laser-cut EVA foam. It’s certainly a lot less work than casting custom tires.

What about adding a tread pattern? [Angus] gave it a try. Perhaps unsurprisingly, a knobby tire has worse traction compared to a smooth tire on smooth MDF. But sometimes treads are appropriate, and as [Angus] points out, if one is 3D printing tires then adding treads comes at essentially zero cost. That’s a powerful ability.

Even if you are not interested in custom wheels, that foaming TPU filament looks pretty nifty. See for yourself in the video, embedded just below. If you find yourself finding a good use for it, be sure to drop us a tip!

Continue reading “Does 3D-Printed Foam Make Good Custom Tires?”

Pi Zero Powers A Little Indoor Rover

Not every robot has to be big. Sometimes, you can build something fun that’s better sized for exploring your tabletop rather than the wastelands of Mars. To that end, [philosiraptor] built the diminutive PITANK rover.

As you might guess from the name, the rover is based on the Raspberry Pi Zero 2. It uses the GPIO pins to output PWM signals, commanding a pair of servos that drive the tracks on either side of the ‘bot. The drivetrain and chassis are made from 3D-printed components. Controlling the robot is handled via a web interface, which [philosiraptor] coded in C# to be as responsive as possible. So you can see where you’re driving, the ‘bot is also kitted out with a camera to provide a live video feed.

Given its low ground clearance and diminutive size, you’re not going to go on big outdoor adventures with PITANK. However, if you wish to explore a nice flat indoor environment, its simple tracked drivetrain should do nicely. We’ve featured a great many rovers over the years; if you’ve got a particularly special one, don’t hesitate to notify the tipsline!

Building A Rubik’s Cube That Solves Itself

If you’re really good, it’s possible to solve a Rubik’s Cube in under 10 seconds. For the rest of us, though, it can be an exceedingly tedious task. For that reason, you might like a Rubik’s Cube that can solve itself, like the one [zeroshot] is trying to build.

What [zeroshot] built is essentially a very small robotic platform inside the center section of an existing Rubik’s Cube. It uses five gear motors that are assembled into the cube’s core, which have enough torque to rotate the individual faces quite easily. While six motors would allow more efficient solves in fewer moves, it was easier to fit just five motors inside the cube, and they’d still get the job done. The motors are controlled by an ESP32, hooked up to a bank of DRV8833 motor drivers. For now, the cube is still a work in progress. While the core can move the faces, [zeroshot] is trying to figure out how to best tackle the problem of feedback in the limited space available. After all, the ESP32 needs to know where the faces are if it’s to make the right moves to reach a solved state. Soldering wires between individual modules can be quite space inefficient; this is one build that might benefit from being integrated onto a single tiny PCB.

We’re used to seeing robots that grab a Rubik’s cube and solve it for you; we haven’t seen a lot of cubes that solve themselves. Regardless, this feat has been achieved before. Video after the break.

Continue reading “Building A Rubik’s Cube That Solves Itself”

Record-Breaking Robots At Guinness World Records

If you ever wanted to win a bar bet about a world record, you probably know about the Guinness book for World Records. Did you know, though, that there are some robots in that book? Guinness pointed some out in a recent post.

Ever wonder about the longest table-tennis rally with a robot or the fastest robotic cube solver? No need to wonder anymore.

Our favorite was the fastest robot to solve a puzzle cube. This robot solved the Rubik’s Cube in 103 milliseconds! Don’t blink or you’ll miss it in the video embedded. Of course, the real kudos go to the team that created the robot: [Matthew Patrohay], [Junpei Ota], [Aden Hurd], and [Alex Berta].

Another favorite was the smallest humanoid robot. In order to win this record, the robot must be able to move its shoulders, elbows, knees, and hips just like a human. It also has to be able to walk on two feet. This tiny little guy meets the requirements and stands only 57.6 mm (2.26 in) tall! Created by [Tatsuhiko Mitsuya] in April 2024, this robot can be controlled via Bluetooth.

We’ve seen entries in this category before — check them out in Almost Breaking The World Record For The Tiniest Humanoid Robot, But Not Quite.

Continue reading “Record-Breaking Robots At Guinness World Records”

A photo of the robot and the controller

A Simple $25 Robot Based On The ESP32

[Paul McCabe] wrote in to let us know about his $25 robot. This small wheeled robot is based on an ESP32 and made using cardboard and hot glue.

You drive the contraption using a Bluetooth game controller thanks to the Bluepad32 library, which boasts a long list of supported hardware. [Paul] provides a Bill of Materials (BoM), complete with current component pricing. We don’t know about you, but it struck us as funny that the microcontroller is less expensive than the battery! Ah, the times we live in. Also [Paul] assumes you already have an appropriate Bluetooth controller and doesn’t include that in the total cost.

Continue reading “A Simple $25 Robot Based On The ESP32”

Robot Phone Home…Or Else

We would have enjoyed [Harishankar’s] tear down of a robot vacuum cleaner, even if it didn’t have a savage twist at the end. Turns out, the company deliberately bricked his smart vacuum.

Like many of us, [Harishankar] is suspicious of devices beaming data back to their makers. He noted a new vacuum cleaner was pinging a few IP address, including one that was spitting out logging or telemetry data frequently. Of course, he had the ability to block the IP address which he did. End of story, right?

No. After a few days of working perfectly, the robot wouldn’t turn on. He returned it under warranty, but the company declared it worked fine. They returned it and, indeed, it was working. A few days later, it quit again. This started a cycle of returning the device where it would work, it would come home and work for a few days, then quit again.

You can probably guess where this is going, but to be fair, we gave you a big hint. The fact that it would work for days after blocking the IP address wouldn’t seem like a smoking gun in real time.

Continue reading “Robot Phone Home…Or Else”