This post on Reddit by [superangryguy] caught our attention today. He’s put together a video explaining the basics of how to build balancing robots, focusing on a 555 timer based one. He’s got two main versions, the 555 based one and another that is based off of two transistors. He says the 555 based one is much easier to build. This has all come about due to the upcoming 555 timer contest. if you go to the Reddit post you can get schematics for both versions as well as a sneak peak at what he plans on building for the contest. You can see the video after the break.
Robots Hacks2394 Articles
Robot Hand Has No Problem Giving You The Finger
Get your Terminator clichés ready, this robot hand reeks of Skynet. It is designed to function like the human hand, but the main goal is one of robustness. A lot of effort went into making sure this won’t break in the field. Instead of rigid gears, a system of tendons actuates each digit. The pulleys that control these are located in the forearm and each has a spring mechanism that helps to cushion shocks to the apparatus which might damage other grippers. It has bone-crushing power behind the 19 degrees of movement and, as you’ve already guessed, this comes at a pretty steep price tag; topping out around 100,000 Euros. It’s more complicated, and more expensive that jamming grippers, but it’s also far scarier. See for yourself in the silent movie after the break.
Continue reading “Robot Hand Has No Problem Giving You The Finger”
ROS Gains Full Body Telemetry
[Taylor Veldrop] has been playing with an NAO robot and ROS, mixed with a Kinect to get some pretty amazing results. The last time we saw any work done with ROS and the Kinect, it was allowing some basic telemetry using the PR2. [Tyler] has taken this a step further allowing for full body control of the NAO robot. Basic mimicking mixed with a little bit of autonomy allow the NAO to follow his steps around a room and even slice a bananna, or hammer nails. We think this is pretty impressive, especially if he were to mix it together with a motion tracking stereoscopic display. Follow along after the break to see it pull off some of these cool feats.
Jamming Gripper Completes Robot Drug Dealer
Here’s an inexpensive way to build your own jamming gripper. [Steve Norris] combined a robot arm with a few inexpensive items to achieve similar results as the original. Much like the last DIY version he started with a balloon and some coffee grounds, but instead of using his own body as a vacuum pump he sourced a Reynolds Handi-Vac, an inexpensive food vacuum sealer. It connects to the balloon using some plastic tubing, and sucks all of the air out, locking the coffee grounds around an object for a firm grip. The video after the break even shows the gripper picking up two aspirin. At first we thought a servo motor was being used to seal off the tube once the air had been pumped out. Instead, it is covering a hole in the tubing, which breaks the vacuum when it’s time to let go of an object.
Continue reading “Jamming Gripper Completes Robot Drug Dealer”
Zipitbot
[Nulluser’s] Zipit was fine, but it couldn’t go anywhere on its own. Adding some motors and a microcontroller fixed that issue, and now he’s got a little robot called the Zipitbot. That’s a dsPIC board on top which communicates with the Zipit over an I2C bus. Four servo motors provide plenty of power to the wheels,with some extra battery packs nestled between them.
Since the Zipit is running Linux, and already has WiFi hardware, it’s not too hard to add Internet control. With this in mind there’s a webcam on the front to broadcast a video feed for use when controlling it remotely. See a couple of videos of this hack after the break.
Tri-rotor Helicopter With Full Autopilot
Quadcopters stand aside, here’s a three-rotor helicopter we think you’re going to love. The body is made out of plywood and carbon fiber rods, keeping it light enough to be easily lifted by just 3 motors while making sure the force doesn’t tear the aircraft apart. Three gyroscopes, two accelerometers, three magnetometers, and a GPS module are all used in conjunction for an autopilot system. There’s a lot of great pictures and videos but our favorite, embedded after the break, shows the tricopter writing messages in the sky using light and camera exposure tricks similar to this ground-based trike.
Improving A Hexapod Design
[JC] built himself a hexapod based on a project he found on the Internet. It worked fairly well, but was mechanically weak and prone to breakage. He set out to improve the design and came up with the unit seen above. It uses three servo motors to control the six legs, and walks quite well as seen in the quick clip after the break. It’s not quite as agile as the little acrobatic six-legger we saw yesterday, but the movement is quite pleasing and it’s capable of moving forward, backward, and turning. [JC’s] post is four pages in all so don’t forget to seek out his links for the construction, linkage, and servo control pages to find concept drawings, cad designs, and his thoughts on the process.