Giant 3D Printer Aims To Produce Life-Sized Boat

As 3D printers become more ubiquitous, the number of custom designs and styles of printers has skyrocketed. From different printing materials and technologies to the movements of the printing head, we’ve seen all kinds of different takes on these tools. But one thing that has been largely limited to commercial and industrial use has been large print sizes —  leaving consumer level prints to be split into several pieces to fit together later. Not so with this giant 3D printer from [Ivan], though.

The design goals for this build are to print an entire boat that [Ivan] can captain himself, and additionally an entire go kart chassis in a single piece. It’s part of a contest between him and another YouTuber and as far as we can tell he’s well on his way to completing the challenge. The printer will be able to churn through 4 kg of filament per day, and has a printable volume of 1000x1000x1420 millimeters, or just shy of 1.5 cubic meters.

While this video is just the first step of building the frame and the printer guides, we can’t wait to see the next steps in the process. It’s one of the largest 3D printers we’ve ever seen, at least outside of printers designed for building entire houses out of concrete.

Continue reading “Giant 3D Printer Aims To Produce Life-Sized Boat”

Simple Propulsion For The Lazy Paddle Boarder

One of the downsides to healthy outdoor activities is all the exercise. Who would want to do that if you can build something to do the hard work for you? That seems to be the theme of [Bitluni]’s latest build, a simple (and hacky) propulsion system for a stand-up paddleboard.

After acquiring an inflatable stand-up paddleboard and trying it out a few times, [Bitluni] decided to skip the “stand up” and “paddle” parts. He designed and printed a very simple propeller, which he intended to power with a brushless motor and speed controller. In the process of drilling out the prop to fit the shaft, he realized he was overcomplicating things. So he decided to just use his battery-powered drill instead. For the shaft tube, he modified an old crutch by drilling a hole in the handle for the shaft and adding a duct with a bearing on the other end. He also attached a carabiner to the handle to fix it to the paddleboard.

A test at a lake showed that the propulsion system performed relatively well for a proof of concept but had some flaws. To submerge it properly, [Bitluni] had to sit on the rear of the paddleboard facing backward. If it was too close to the surface, it would suck air and lose thrust, or spray him and his drill with water. Of course, there is also the real risk of drowning his drill in the process.

Projects don’t need to be complex to be enjoyable, and you can often learn more by quickly creating a proof of concept instead of taking forever to come up with the “perfect” design.

If you want to see some more advanced water-borne projects, check out the waterjet-powered electric surfboards built by [RCLifeOn] and [Andrew W].

Continue reading “Simple Propulsion For The Lazy Paddle Boarder”

Watching A Boat Get Welded Together Is Workshop ASMR

If you’ve been on the Internet long enough to know about Hackaday, we’ll wager you’re familiar with the concept of autonomous sensory meridian response (ASMR) — a tingling sensation in the scalp that’s said to be triggered by certain auditory stimuli. There are countless videos on YouTube that promise to give you “the tingles” using everything from feather dusters to overly starched shirts, but for us, the tool of choice is apparently a Lincoln Electric Magnum PRO 100SG spool gun in the hands of [Bob].

You’ll want a friend to help wrangle the panels.

Admittedly we can’t promise the latest Making Stuff video will induce a euphoric physical sensation for all viewers, but at the very least, we think you’ll agree that watching [Bob] and his brother methodically welding together the twelve foot hull of what will eventually be a custom jet boat is strangely relaxing.

While we usually associate [Bob] with scratch builds, this time he’s actually working his way through a commercial kit. Sold by Jet Stream Adventure Boats, the kit includes the pre-cut aluminum panels that make up the hull, stringers, and top deck — niceties like a windshield and seats are offered as extras. The engine and jet drive need to be salvaged from an existing personal watercraft (PWC), but that will have to wait for a future video. For now, there’s a boat-load (get it?) of tack welding to be done.

The build process looks to go pretty smoothly, except for when they attempt to put the bow of the boat together. Unable to get the two side panels to meet properly, [Bob] eventually has to contact the manufacturer. After some back and forth, it turns out that a bit must have broken on the CNC when the hull panel went through, as a key cut was made nearly 8 inches (20 cm) too short. He was able to complete the cut with a jigsaw and continue on with the build, but we’re still scratching our heads at how this wasn’t caught before it got shipped out.

It won’t be the first homemade boat we’ve covered, but given [Bob]’s attention to detail, we’re particularly excited to see how this one develops in future videos. Especially since he’s foolishly bravely asked the commenters to come up with a name for his new craft.

Continue reading “Watching A Boat Get Welded Together Is Workshop ASMR”

Don’t Mind If I Ski-Do

There is an age-old tradition among hackers of just making it yourself. Whether the real thing is too expensive or you think you can make a better one, the itch strikes, and it can quickly spread. [Homemade Madness] has quite the itch as he builds his own jetski.

What is a jetski but a boat with a shell on top? In an earlier video, he created a boat out of plywood and, after the usual steps of fiberglass and sealing, was proud to float around in his relatively normal-looking boat. But now that he had a working bottom, it was time to return to CAD. He printed out templates for all various shapes he would need, each labeled with a different designator, and glued them to the plywood. No fancy CNC here, just a steady hand and a jigsaw. We love the professional build instructions he compiled for himself that detail in LEGO-like quality exactly how each piece slots into where and in what order to do them. In addition to the top layer of the jetski, he also designed a stand for the boat to rest on while he made it, which is just going the extra mile. A ceiling-mounted winch made it easy to lift the ship into position. Next, he connected all the various framing pieces with PU glue. Thin plywood acted as cladding on top of the skeleton. Filling, sanding, and fiberglass overlaid the structure, making it waterproof. More sanding and some primer later, and it was ready for another water test.

He designed a version with an outboard motor, but he’s trying to build one with a built-in jet drive. So we’re looking forward to seeing the next step and him flying around on his custom watercraft. But what he has already done is quite impressive. If you’re looking for something a little smaller to pull you around the water, why not take a look at this little 3d printed tug boat? Video after the break.

Continue reading “Don’t Mind If I Ski-Do”

Recycled Speed Boat Beats The Barnacles Out Of Your Average Rebuild

There’s an old saying that says “Anything is possible with enough Time, Money, or Brains. Pick two.” For [Mr HỒ Thánh Chế], the choice was obvious: Time, and Brains. This is evident by the impressive DIY boat build shown in the video below the break.

[Mr HỒ] starts with an Isuzu marine diesel engine that was apparently found on the beach, covered in barnacles and keel worms (and who knows what else). A complete teardown reveals that the crankcase was miraculously spared the ravages of the sea, and somehow even the turbo survived. After a good cleaning and reassembly, the engine rumbles to life. What’s notable is that the entire engine project was done with only basic tools, save for a lathe. Even generally disposable parts such as the head gasket are re-used.

Moving onto the hull, half of an old damaged boat is used and a new top is built. Car seats out of a Toyota sit behind a steering column also from a car, while the deck is built from scratch out of square tubing, foam board, and fiberglass.

What we liked about the project isn’t so much the end result, it has some build quality issues and it looks like the steering is far too slow, but what project of our own hasn’t been knocked together for fun with some obvious flaws? In fact, that’s very often the epitome of the Hacker spirit- doing it quick, dirty, having fun, and iterating as we go. For that, our hat is off to [Mr HỒ].

If boat recycling puts the wind in your sails, check out this boat-turned-sauna project.

Continue reading “Recycled Speed Boat Beats The Barnacles Out Of Your Average Rebuild”

Saving Birds With 3D Printed Boats

Montana, rightfully nicknamed the big sky country, is a beautiful state with abundant wide open landscapes, mountains, and wildlife. It’s a fantastic place to visit or live, but if you happen to reside in the city of Butte, that amazing Montana landscape is marred by the remnants of an enormous open pit mine. Not only is it an eyesore, but the water that has filled the pit is deadly to any bird that lands there. As a result, a group of people have taken to some ingenious methods to deter birds from landing in the man-made toxic lake for too long.

When they first started, the only tool they had available was a rifle. Scaring birds this way is not the most effective way for all species, though, so lately they have been turning to other tools. One of which is a custom boat built on a foam bodyboard which uses a plethora of 3D printed parts and sensors to allow the operator to remotely pilot the boat on the toxic lake. The team also has a drone to scare birds away, plus an array of other tools like high-powered lasers, propane cannons, and various scopes in order to put together the most effective response to help save wildlife.

While this strategy runs the gamut of the tools most commonly featured here, from 3D printers to drones to lasers, the only thing that’s missing is some automation like we have seen with other drone boat builds we’ve featured in the past. It takes quite a bit of time to continually scare birds off this lake, even through the winter, so every bit of help the team can get could go even further.

Continue reading “Saving Birds With 3D Printed Boats”

Hacking A Fuel Sensor Into A Portable Tank, Literally

Regular readers of Hackaday will know that the projects we feature are generally of the high-tech variety. Microcontrollers, 3D printed parts, embedded Linux, lots of wires, that sort of thing. But that’s not to say we don’t appreciate the somewhat more visceral builds out there; after all, hacking is about creative problem solving and thinking outside the box, and none of that is limited to how complex the fix actually is.

Take for example this quick hack that [R. Preston McAfee] recently sent our way. Looking for a way to check how much fuel was left in his outboard motor’s small portable gas tank without crawling back to look at it, he decided to rig it up with a sending unit. While they’re technically designed for larger tanks which are permanently installed into a boat’s hull, he reasoned there was nothing about the float sensor that would keep it from working in his case so long as it could be safely mounted.

To that end, [Preston] started by cutting a 38 mm (1.5″) hole in the thickest part of the tank, and sanded the area around the opening to smooth things out. He then measured the depth of the tank at that point, and ordered an appropriately sized float sensor. He drilled out the holes for the five mounting bolts, and inserted them through the larger whole so their heads would be inside the tank. By holding the exposed threads with a pair of vice grips he was able to crank the nuts down on each bolt to form a tight seal to the gasket, though it should be noted that the resulting damage to the threads will likely make it difficult to remove the nuts in the future.

Admittedly this is a pretty simple fix, but it’s well thought-out and we appreciate the effort [Preston] put in to documenting the whole process. We’ve certainly covered more elaborate ways of seeing what’s left in the tank, but just because a solution is flashier doesn’t mean it’s necessarily any better.