Piping Micrometer Data To A VGA

[sspence] found himself in need of a way to push the data from his digital micrometer to a VGA panel for easy display. His micrometer had a data port, so he figured he could plug it into a micro controller and have that push data to a VGA. The micrometer spits out a 52 character data stream in reverse order, so he had to reassemble it in the correct order in software. After a bit of reverse engineering the funky data stream, he had an Arduino pulling the serial data. All that was left was the addition of a VGA shield for output.

He wanted to extend this a bit further though, so he added a foot switch and finger switch to allow for taking multiple measurements and display an average. In the end, he was left with a nice huge display for his micrometer that gave him exactly what he wanted.

We expect that someone will ask why he chose to use an arduino and a shield instead of designing a custom circuit with less components and cost. Our guess would be that his goal was to “generate bin numbers for gear sets” and he just needed an upgraded tool. His goal wasn’t to research design and implement the most efficient circuit. That being said, if anyone feels like designing a smaller package for this, feel free to share with the rest of us!

PCB Manufacturing Tutorial

There comes a time in every maker’s career where solderless breadboards won’t do, perfboard becomes annoying, and deadbug is impossible. The solution is to manufacture a PCB, but there’s a learning curve. After learning a few tricks from [Scott]’s awesome DIY PCB guide, it’s easy to make your own printed circuit boards.

There are a few basic steps to making a PCB. First is designing the board in Eagle or KiCad. The next step, putting the design into copper, has a lot of techniques to choose from. Photo transfer, direct printing, and CNC milling have huge benefits, but by far the most common means hobbyists produce boards is with toner transfer using a laminator.

Unless you’re doing SMD-only circuits, a drill is required. Most people can get away with a Dremel or other rotary tool, but Hackaday has a favorite drill press that is perfect for drilling holes in FR-4. In part two of [Scott]’s tutorial, he goes over solder masks, silk screens before jumping into vias. These small bits of copper conducting electricity through a circuit board are extremely hard for the garage-bound builder to achieve on their own, but there are a few solutions – copper rivets (anyone have a US source for these?) and copper foil can be used, but sometimes the most effective solution is just hitting the board with a lot of solder and heat.

Thanks [Upgrayd] for the title pic.

On-the-go Tool Wallet

Whether you’re off to the local Hackerspace, or headed to a friend’s house to lend a hand with the latest project it’s nice to have your favorite tools in a handy package. [Mário Saleiro] decided to take the concept one step further than a toolbox by making his own zipper wallet with cutouts for his favorite tools.

The enclosure is a CD wallet, but who carries those plastic discs around with them anymore? After removing the CD sleeves [Mário] positioned his tools — in this case a pen, angle cutters, and pliers — on one side of the case to make a template. The tracings were then used to cut out pieces from an exercise carpet (we think this is like a rubber yoga mat). The square was glued to the side of the wallet, and some elastic band was sewn in to hold them in place. On the other side is a small components bin, and a little box to hold a tiny multimeter.

[Thanks Nuno]

Turning A 1942 Lathe Into A Functional Piece Of Art

A couple of years ago, [macona] picked up a 1943 Monarch 10EE lathe. This monstrous machine is not only an amazing piece of engineering but an awesome work of art; not only can this lathe manufacture parts with exacting precision, it’s also a wonderful piece of machine age design.

The Monarch 10EE lathe was extremely high-tech for its time, and the War Dept Detroit Ordinance District tag on the cooling pump bears this machines lineage: this lathe was most likely used to make very precise military equipment such as the Norden bombsight.

After 60 years of faithful service, [macona]’s lathe picked up several coats of paint in different colors and generally fell into a state of disrepair. [macona] spent a great deal of time overhauling this lathe by replacing a bent feed rod, troubleshooting the motor problems, and eventually replacing the whole motor with a modern AC brushless servo. You can check out the improvement the AC servo made in a video after the break.

Of course no post about a rebuilt lathe would be complete without a few beauty shots. We’re extremely thankful for [macona] for not only restoring this machine, but also for sharing it with us. Thanks to [macona]’s restoration, this machine will hopefully be around for another 60 years.

Continue reading “Turning A 1942 Lathe Into A Functional Piece Of Art”

Soldering From The Hip

You can be the Sheriff around these parts, but only if you have a solder gun and holster to boot. [Mikasaurus’] latest build is certainly fun, even if it’s not so practical. We’re not giving up our Weller knock-off any time soon, but this quick-heat repackage will certainly be a conversation starter at your next Hackerspace event.

The business end of the build is taken from a cheap four-battery soldering iron. [Mike] separated each of the components, then grabbed a toy gun to see where each of them might fit. The batteries are just the right size to fit into the gun’s magazine. All he had to do to make that happen is add contacts to the gun and springs to the magazine. A momentary push switch was positioned behind the trigger and used to connect the battery pack to the solder tip.

After the break you’ll find a little over-the-top modeling, and some solder melting. This will go great with that 9mm Bluetooth headset you built. Just don’t stick the wrong one in your ear.

Continue reading “Soldering From The Hip”

Measuring Projectiles With OpenChronometer

[Spork] over on the Netduino forums wanted to push the limits of what his little board could do. He put together a chronometer to measure the velocity of rifle rounds and Nerf darts using an Arduino-compatable CPLD shield.

The project is built around a pair of commercial CED M2 chronograph sensors; because people have the tendency to shoot through these sensors, they’re available as replacement units for much less than the cost of a complete chronograph setup. [Spork] couldn’t figure out a way for his Arduino clone to read pins with a resolution of 1 microsecond, so a Amani GTX CLPD shield was added to the build. This programmable logic chip takes the output from a chronometer sensor, starts a timer, waits for the second sensor to trigger, and stops the timer. From that, the velocity of just about any projectile can be calculated.

Of course, [Spork] needed to test his new device, so he took it out to the range and fired 25 rifle rounds through his chronometer. The result was a very nice, normal distribution centered around 2400 feet per second, exactly as would be expected. Although [Spork] didn’t test out low-velocity projectiles such as Nerf darts, we expect the same reliable results.

via majolsurf

3d Printing A Mini Lathe

While browsing on one of our regularly visited sites, RobotsDreams, we found this interesting little video. Here, [Sublime] is showing off his 3d printed mini lathe. In the video he mentions that all the files are available for download so you could make one for yourself, but there were unfortunately no links. A quick bit of googling and we found some more information.  We found the project on Thiniverse, though reading through the comments it seems that [Sublime] no longer uses Thingiverse. You can now find the files on his GitHub account to make your own.

The design seems very solid and looks like it could handle some basic jobs. As [Sublime] points out in the video below, you already know what parts are going to wear out fast and can simply print a few extras to have on hand.  While that may seem somewhat wasteful, he also points out that he’s using PLA which is compostable and much easier to recycle.

Continue reading “3d Printing A Mini Lathe”