ChatControl Gets Coup-De-Grace

Possibly the biggest privacy story of the year for Europeans and, by extension the rest of the world, has been ChatControl. Chatcontrol is a European Union proposal backed by Denmark for a mandatory backdoor in all online communications. As always with these things, it was touted as a think-of-the-children solution to online child abuse material, but as many opposed to it have warned, that concealed far more sinister possibilities. For now, it seems we can breathe easily as the Danes are reported to have formally backed away from the proposal after it was roundly condemned by the German government, sending it firmly into the political wilderness.

Hackaday readers are likely vastly more informed on this matter than many of the general public, so you’ll have no need for a primer on the obvious privacy and security concerns of such a move. From our point of view, it also suffered from the obvious flaw of being very unlikely to succeed in its stated aim. Even the most blinkered politician should understand that criminals would simply move their traffic to newly-illegal encrypted forms of communication without government backdoors. Perhaps it speaks volumes that it was the Germans who sounded its death-knell, given that state surveillance on that level is very much within living memory for many of them.

The mood in European hackerspaces has been gloomy of late on the subject, so it’s something of a cause for celebration on the continent. If only other governments on the same side of the Atlantic could understand that intrusive measures in the name of thinking of the children don’t work.

European flags: Šarūnas Burdulis, CC BY-SA 2.0 .

This Week In Security: The UK Wants Your ICloud, Libarchive Wasn’t Ready, And AWS

There’s a constant tension between governments looking for easier ways to catch criminals, companies looking to actually protect their users’ privacy, and individuals who just want their data to be truly private. The UK government has issued an order that threatens to drastically change this landscape, at least when it comes to Apple’s iCloud backups. The order was issued in secret, and instructed Apple to provide a capability for the UK officials to access iCloud backups that use the Advanced Data Protection (ADP) system. ADP is Apple’s relatively new end-to-end encryption scheme that users can opt-into to make their backups more secure. The key feature here is that with ADP turned on, Apple themselves don’t have access to decrypted user data.

If this order wasn’t onerous enough, it seems to explicitly include all ADP-protected data, regardless of the country of origin. This should ring alarm bells. The UK government is attempting to force a US company to add an encryption backdoor to give them access to US customer data. Cryptographer [Matthew Green] has thoughts on this situation. One of the slightly conspiratorial theories he entertains is that portions of the US government are quietly encouraging this new order because the UK has weaker protections against unreasonable search and seizure of data. The implication here is that those elements in the US would use this newfound UK data access capability to sidestep Fourth Amendment protections of citizens’ data. This doesn’t seem like much of a stretch.

[Matthew] does have a couple of suggestions. The first is passing laws that would make it illegal for a US company to add backdoors to their systems, specifically at the request of foreign nations. We’ve seen first-hand how such backdoors can backfire once accessed by less-friendly forces. In an ironic turn of fate, US agencies have even started recommending that users use end-to-end encrypted services to be safe against such backdoors. Technically, if this capability is added, the only recourse will be to disable iCloud backups altogether. Thankfully Apple has pushed back rather forcefully against this order, threatening to simply turn off ADP for UK users, rather than backdoor the rest of the world. Either way, it’s a scary bit of overreach.

Continue reading “This Week In Security: The UK Wants Your ICloud, Libarchive Wasn’t Ready, And AWS”

This Week In Security: Medical Backdoors, Strings, And Changes At Let’s Encrypt

There are some interesting questions afoot, with the news that the Contec CMS8000 medical monitoring system has a backdoor. And this isn’t the normal debug port accidentally left in the firmware. The CISA PDF has all the details, and it’s weird. The device firmware attempts to mount an NFS share from an IP address owned by an undisclosed university. If that mount command succeeds, binary files would be copied to the local filesystem and executed.

Additionally, the firmware sends patient and sensor data to this same hard-coded IP address. This backdoor also includes a system call to enable the eth0 network before attempting to access the hardcoded IP address, meaning that simply disabling the Ethernet connection in the device options is not sufficient to prevent the backdoor from triggering. This is a stark reminder that in the firmware world, workarounds and mitigations are often inadequate. For instance, you could set the gateway address to a bogus value, but a slightly more sophisticated firmware could trivially enable a bridge or alias approach, completely bypassing those settings. There is no fix at this time, and the guidance is pretty straightforward — unplug the affected devices.

Continue reading “This Week In Security: Medical Backdoors, Strings, And Changes At Let’s Encrypt”

Security Alert: Potential SSH Backdoor Via Liblzma

In breaking news that dropped just after our weekly security column went live, a backdoor has been discovered in the xz package, that could potentially compromise SSH logins on Linux systems. The most detailed analysis so far seems to be by [Andres Freund] on the oss-security list.

The xz release tarballs from 5.6.0 in late February and 5.6.1 on March 9th both contain malicious code. A pair of compressed files in the repository contain the majority of the malicious patch, disguised as test files. In practice, this means that looking at the repository doesn’t reveal anything amiss, but downloading the release tarballs gives you the compromised code.

This was discovered because SSH logins on a Debian sid were taking longer, with more CPU cycles than expected. And interestingly, Valgrind was throwing unexpected errors when running on the liblzma library. That last bit was first discovered on February 24th, immediately after the 5.6.0 release. The xz-utils package failed its tests on Gentoo builds.

Continue reading “Security Alert: Potential SSH Backdoor Via Liblzma”

Did TETRA Have A Backdoor Hidden In Encrypted Police And Military Radios?

Encrypted communications are considered vital for many organizations, from military users to law enforcement officers. Meanwhile, the ability to listen in on those communications is of great value to groups like intelligence agencies and criminal operators. Thus exists the constant arms race between those developing encryption and those desperately eager to break it.

In a startling revelation, cybersecurity researchers have found a potentially intentional backdoor in encrypted radios using the TETRA (TErrestrial Trunked RAdio) standard. TETRA equipment is used worldwide by law enforcement agencies, military groups, and critical infrastructure providers, some of which may have been unintentionally airing sensitive conversations for decades.

Continue reading “Did TETRA Have A Backdoor Hidden In Encrypted Police And Military Radios?”

Peel Apart Your ISP’s Router

Whether your home Internet connection comes by ADSL, fibre, cable, or even satellite, at some point in the chain between your ISP and your computer will be a router in your home. For some of us it’s a model we’ve bought ourselves and loaded up with a custom distro, but for the majority it’s a box supplied by our ISP and subject to their settings and restrictions. [Paddlesteamer] has just such a router, a Huawei model supplied by the Turkcell ISP, and decided to do a little snooping into its setup.

In a tale of three parts, we see the device unravel, from uncovering a shell to reverse engineering its update process, to delving in its firmware and finally removing all its restrictions entirely. It’s a fascinating process in which we learn a lot, such as the way a man-in-the-middle attack is performed on the router’s connection tot he ISP, or that it contains an authorised SSH key seemingly giving Huawei a back door into it. You may never do this with your ISP’s router, but it pays to be aware of what can be put in your home by them without your realising it.

The Golden Age of router hacking may be behind us as the likes of the Raspberry Pi have replaced surplus routers as a source of cheap Linux boards, but  as this shows us there’s still a need to dive inside a router from time to time. After all, locked-down routers are hardly a new phenomenon.

Via Hacker News.

LEDs Light The Way To This Backdoor

A curious trend for some years in the world of PC hardware has been that of attaching LEDs to all the constituent parts of a computer. The idea is that somehow a gaming rig that looks badass will somehow be just a little bit faster. As [Graham  Sutherland] discovered when he wanted to extinguish the LEDs on his new Gigabyte graphics card, these LEDs can present an unexpected security hazard.

The key to their insecurity comes in the Gigabyte driver. This is a piece of software that you would normally expect to be an abstraction layer with an interface visible to your user level privilege, and a safe decoupling between that and the considerably more security sensitive hardware layer from which the LED bus can be found. Instead of this, the Gigabyte driver is more of a wrapper that simply exposes the LED bus directly to the user level. It’s intended that user-level code can easily bit-bang WS2812 LEDs without hinderance, but its effect is to provide a gaping hole in the security layers intended to keep malicious code away from the hardware. The cherry on the cake is provided by the discovery of a PIC microcontroller on the bus which can be flashed with new code, providing an attacker with persistent storage unbeknownst to the operating system or CPU.

The entire Twitter thread is very much worth reading whether you are a PC infosec savant or a dilettante, because not only should we all know something about the mechanisms of PC backdoors we should also be aware that sometimes a component as innocuous as an LED can be a source of a security issue.

Thanks [Slurm] for the tip.

Gigabyte motherboard picture: Gani01 [Public domain].