An Introduction To Vector Displays

clock

Unlike the CRTs found in big old televisions, vector displays are a bit of a historical oddity. Instead of sweeping an electron beam across the screen from left to right and top to bottom, a vector display draws lines between two points on a screen. Once used in arcade games such as AsteroidsTempest, and old FAA displays, vector monitors have fallen out of favor due to either the complexity or difficulty in acquiring the needed CRT. The folks over at NYC Resistor put up a great tutorial for getting a vector display up and running, and even managed to put a clock on an oscilloscope.

The key component of getting a vector display to work is the digital to analog converter. This DAC takes voltages from eight pins on a Teensy 2.0 dev board and converts them to a voltage anywhere in between 0 and 5 Volts. After connecting the output of this DAC to an input on an oscilloscope, the microcontroller can draw a line between any two points on an axis.

In the video after the break, you can see two of these DACs connected to an oscilloscope displaying a clock. It’s a very cool piece of work, and something that finally gives a purpose to the ancient CRT oscilloscope you might have lying around.

Continue reading “An Introduction To Vector Displays”

Demystifying Camcorder CRT Viewfinders

Every smartphone (and most dumb phones) has a video camera built into it these days. Some of them are even capable of recording respectable HD video. So we’d bet that the decades old camcorder you’ve got kicking around isn’t getting any use at all anymore. [John] wants to encourage you to hack that hardware. He published a post showing just how easy it is to salvage and use a camcorder CRT.

The gist is that you simply need to hook up power and feed it video. The board that is attached to the CRT has its own voltage hardware to drive the tube. He demonstrates a 9V battery as a power supply, but also mentions that it should be pretty easy to power the thing from a USB port. As for video, all it takes is a composite signal. Of course you’ve got to determine the pinout for your particular CRT module. The method he chose was to use a continuity tester to find the path from a capacitor’s negative leg to the appropriate pin header. Next he used a bench supply to inject a current-limited low voltage until he saw response when probing the pins. Finding the composite-in is a similar trial and error process.

So what can you use this for? Why not make it the display for a simple video game?

More CRT Fun With The Scope Clock

That’s a sexy way to use parts from an old oscilloscope. [Aaron] took his inspiration from another project that was using CRTs from old oscilloscopes. Now he’s giving back with a site dedicated to sharing information about the Scope Clock. This project is along the same lines as the one we saw a few days ago.

The image above shows his first build in its new home in Hong Kong. The clock is housed in two clear acrylic containers, paired through a surprisingly beefy military grade connector. You can see the journey that it took to get to this polished finish by going to the Prototype tab at the top of the page linked above. One of the images shows some fast captures of the screen redraw. It lets you see the vectors which are being traced on the phosphor screen by the electron gun. This gives an image that we think is far more pleasing than the row scanning of a traditional CRT monitor.

Of course you don’t have a to start from scratch either. Here’s a clock project that just augments a functional CRT scope.

Custom Circuit Drives A Small Round CRT Display

[Svofski’s] latest hack seeks to do no more than look cool on his desk. We’d say mission accomplished. He doesn’t even need anyone around to be proud of the small round CRT display unit he put together. Just having it hum away next to him will be more than enough to keep him going when regular work gets a bit tedious.

One of the biggest challenges when working with a cathode ray tube is the supply. He compares the requirements with that of Nixie tubes, and this is quite a bit more challenging since he wants to generate the 750V from a 12V DC source. To pull it off he hand wound his own transformer. There are two secondary coils, one for the cathode heater and the other as the supply. You can see a brief clip of the unit in action after the break.

Take note of the PCB section of his writeup. He took a meandering route through several different software packages before printing the board. It started with Eagle, moved to freerouting.net, which produced a Specctra file that he converted to gEDA using a Python script.

Continue reading “Custom Circuit Drives A Small Round CRT Display”

CRT Reborn As A Planter

It does make us sad to see all the waste generated as we move from CRT monitors and televisions to flat panel offerings. Here’s a way to cut down just a bit on how much is going to waste. [Denizpa] turned a CRT monitor into a planter.

The project is very straight-forward. First remove the plastic body from the electronic guts. Next you’ll want to choose your paint colors. While you’re at the home store, pick up a sanding sponge as well. [Denizpa] used 320 grit to sand all of the outside surfaces to help ensure the paint would bond well. Once the paint dried four plastic corner brackets were screwed in place to add some interest to the bottom of the planter. It’s not quite time to plant though, there’s way too many holes in the case to just fill it up with soil. A black plastic garbage bag serves as a liner and completes the project.

No mention on what to do with the guts you removed. If you have an idea let us know in the comments section.

Building A CRT And Bathing Yourself In X-rays

For the Milan design week held last April, [Patrick Stevenson Keating] made a cathode ray tube and exhibited it in a department store.

The glass envelope of [Keating]’s tube is a very thick hand-blown piece of glass. After coating the inside of the tube with  a phosphorescent lining, [Keating] installed an electrode in a rubber plug and evacuated all the air out of the tube. When 45,000 Volts is applied to the electrode, a brilliant purple glow fills the tube and illuminates the phosphor.

Since the days of our grandfathers, CRTs have usually been made out of thick leaded glass. The reasoning behind this – and why your old computer monitor weighed a ton – is that electron guns can give off a substantial amount of x-rays. This usually isn’t much of a problem for simple devices such as a Crookes tube and monochrome CRTs. Even though [Keating] doesn’t give us any indication of what is being emitted from his tube, we’re fairly confident it’s safe for short-term exposure.

Despite being a one-pixel CRT, we can imagine using the same process to make a few very interesting pieces of hardware. The Magic Eye tube found in a few exceptionally high-end radios and televisions of the 40s, 50s, and 60s could be replicated using the same processes. Alternatively, this CRT could be used as a Williams tube and serve as a few bits of RAM in a homebrew computer.

You can check out the tube in action while on display after the break, along with a very nice video showing off the construction.

Continue reading “Building A CRT And Bathing Yourself In X-rays”

Making Instagram With An Old CRT

If you’re not familiar with Instagram, it’s a mobile app that takes pictures, applies low-fi ‘lomographic’ digital filters, and shares them on the Internet. For reasons we can’t comprehend, Instagram has been wildly successful as of late and was recently purchased by Facebook for a Billion dollars. [Martin Ström] figured he could do something much cooler than applying digital filters to a cell phone picture, so he built InstaCRT, an app that turns your pictures into grainy CRT images and satiates the geek and hipster in everyone.

From [Martin]’s project page, InstaCRT uses a small black and white CRT from an old camcorder and a Canon 7D to apply real-world analog filters to all the uploaded pictures. Once the pictures are uploaded to the MacBook Pro server, they’re displayed on the CRT and a picture is taken with the 7D. Once an Android/iOS device sends a picture to the server, it’s displayed on the CRT, the 7D snaps a picture, and the resulting ‘filtered’ picture is sent back to the mobile device.

While we’re sure a few Hackaday commentors are going to ask ‘why’, it’s still a very cool build that is the first real world digital camera filter we’ve seen. You can check out the video demo of InstaCRT after the break.

Continue reading “Making Instagram With An Old CRT”