Clever Suction For Robot Arm Automates Face Shield Production

We’re certainly familiar with vacuum grabbers used in manufacturing to pick items up, but this is a bit different. [James Wigglesworth] sent in some renders and demo video (embedded after the break) of the Dexter robot arm and a laser cutter automatically producing face shields.

It’s a nice little bit of automation, where you can see a roll of plastic on the right side of the Glowforge laser cutter feeding into the machine. Once the laser does its thing, the the robot arm reaches in and grabs the newly cut face shield and stacks it in a box neatly for future assembly. There are a lot of interesting parts here, but the fact that the vacuum grabber is doing it’s job without a vacuum air supply is the one we have our eye on.

The vacuum comes from a corrugated sleeve that makes up the suction cup on the end of the robot arm. A rubber band holds a hinged piece over a valve on that sleeve that can be opened or closed by a servo motor. When the cuff is compressed against the face shield, the servo closes the valve, using the tape as a gasket, and the corrugated nature of the cuff creates a vacuum due to the weight of the item it is lifting. This means you don’t need a vacuum source plumbed into the robot, just a wire to power the servo.

The robot arm is of course the design that won the 2018 Hackaday Prize. I comes as no surprise to see the Haddington Dynamics crew setting up a manufacturing line like this one. As we discovered a few weeks ago, 3D printers, laser cutters, and robot arms are part of their microfactory setup and well suited to making PPE to help reduce the shortage during the COVID-19 outbreak.

Continue reading “Clever Suction For Robot Arm Automates Face Shield Production”

The Real Lessons About 3D Printed Face Shields: Effective Engineering Response In Times Of Crisis

3D printed face shields and other health equipment is big news right now. Not long ago, Prusa Research rapidly designed and manufactured 3D printed face shields and donated them to the Czech Ministry of Health. Their effort is ongoing, and 3D printers cranking out health equipment like the NIH approved design has been peppering headlines ever since.

The Important Part Isn’t 3D Printers

The implied takeaway from all the coverage is that 3D printers are a solution to critical equipment shortages, but the fact that 3D printers are involved isn’t really the important part. We all know printers can make plastic parts, so what should be the real takeaway? The biggest lessons we can learn about Prusa’s ongoing effort are related to how they’ve gone about it.

Continue reading “The Real Lessons About 3D Printed Face Shields: Effective Engineering Response In Times Of Crisis”