Open-Source Medical Devices Hack Chat

Join us on Wednesday, January 29 at noon Pacific for the Open-Source Medical Devices Hack Chat with Tarek Loubani!

In most of the developed world, when people go to see a doctor, they’re used to seeing the latest instruments and devices used. Most exam rooms have fancy blood pressure cuffs, trays of shiny stainless steel instruments, and a comfortable exam table covered by a fresh piece of crisp, white paper. Exams and procedures are conducted in clean, quiet places, with results recorded on a dedicated PC or tablet.

Such genteel medical experiences are far from universal, though. Many clinics around the world are located in whatever building is available, if they’re indoors at all. Supplies may be in chronically short supply, and to the extent that the practitioners have the instruments they need to care for patients, they’ll likely be older, lower-quality versions.

Tarek Loubani is well-versed in the practice of medicine under conditions like these, as well as far worse situations. As an emergency physician and researcher in Canada, he’s accustomed to well-appointed facilities and ample supplies. But he’s also involved in humanitarian relief, taking his medical skills and limited supplies to places like Gaza. He has seen first-hand how lack of the correct tools can lead to poor outcomes for patients, and chose to fight back by designing a range of medical devices and instruments that can be 3D-printed. His Glia Project has free plans for a high-quality stethoscope that can be built for a couple of dollars, otoscopes and pulse oximeters, and a range of surgical tooling to make the practice of medicine under austere conditions a little easier. Continue reading “Open-Source Medical Devices Hack Chat”

Controlling Tremors As They Happen

Some neurological disorders, like Parkinson’s disease, can cause muscle tremors which can get worse as time goes along. In the beginning it may not be too difficult to manage, but as the disease progresses the tremors get worse and worse, until day-to-day movements are extremely difficult. Even picking up a fork or pouring a glass of water becomes nearly impossible. Some helpful tools have been designed to limit the impacts of the tremors, but this new device seeks to dampen the tremors directly.

A research team from Fresno State has been developing the Tremelo, which is a hand stabilizer that straps onto the arm of a person suffering from tremors. It has sets of tuned mass dampers in each of two enclosures, which rapidly shift the weights inside to counter the motion of the wearer’s tremors. The device has already shown success in 36 trial patients and does an incredible job at limiting the amount of tremors the user experiences, and also has a bonus of being non-invasive for the wearer.

The team has successfully trialed the program, but is currently seeking funding on Indiegogo. The project seems worthwhile and is a novel approach to a common problem. In the past, devices (admittedly with a much cheaper price tag) try to solve the problem externally rather than in the direction that the Tremelo has gone, and it’s a unique idea that shows a lot of promise.

Continue reading “Controlling Tremors As They Happen”

Hacking Surgery: Suspended Animation May Be Here

Suspended animation is a staple of science fiction. Need to take a 200 year trip to another star system? Go to sleep in some sort of high-tech coccoon and wake up at your destination. We saw it in Star Trek, 2001, and many other places. Doctors at the University of Maryland have reprtedly put at least one patient in suspended animation, and it isn’t to send them to outer space. The paper (behind a paywall, of course) is available if you have the medical background to wade through it. There’s also a patent that describes the procedure.

Trauma surgeons are frustrated because they often see patients who have been in an accident or have been shot or stabbed that they could save if they only had the time. A patient arriving at an ER with over half their blood lost and their heart stopped have a less than 5% chance of leaving the ER without a toe tag. By placing the patient in suspended animation, doctors can gain up to two hours to work on injuries that previously had to be repaired in mere minutes.

Continue reading “Hacking Surgery: Suspended Animation May Be Here”

Biodegradable Implants Supercharge Nerve Regeneration

Controlled electrical stimulation of nerves can do amazing things. It has been shown to encourage healing and growth in damaged cells of the peripheral nervous system which means regaining motor control and sensation in a shorter period with better results. This type of treatment is referred to as an electroceutical, and the etymology is easy to parse. The newest kid on the block just finished testing on rat subjects, applying electricity for one, three, or six days per week in one-hour intervals. The results showed that more treatment led to faster healing. The kicker is that the method of applying electricity was done through unbroken skin on an implant that dissolves harmlessly.

The implant in question is, at its most basic, an RFID tag with leads that touch the injured nerves. This means wireless magnetic coupling takes power from an outside source and delivers it to where it is needed. All the traces on are magnesium. There is a capacitor with silicon dioxide sandwiched between magnesium, and a diode made from a doped silicon nanomembrane. All this is encased in a biodegradable substrate called poly lactic-co-glycolic acid, a rising star for FDA-approved polys. Technologically speaking, these are not outrageous.

These exotic materials are not in the average hacker’s hands yet, but citizen scientists have started tinkering with the less invasive tDCS and which is applying a small electrical current to the brain through surface electrodes or the brain hacking known as the McCollough effect.

Via IEEE Spectrum.

Toilet Seat Could Save Your Ass

Our morning routine could be appended to something like “breakfast, stretching, sit on a medical examiner, shower, then commute.” If we are speaking seriously, we don’t always get to our morning stretches, but a quick medical exam could be on the morning agenda. We would wager that a portion of our readers are poised for that exam as they read this article. The examiner could come in the form of a toilet seat. This IoT throne is the next device you didn’t know you needed because it can take measurements to detect signs of heart failure every time you take a load off.

Tracking heart failure is not just one test, it is a buttload of tests. Continuous monitoring is difficult although tools exist for each test. It is unreasonable to expect all the at-risk people to sit at a blood pressure machine, inside a ballistocardiograph, with an oximeter on their fingers three times per day. Getting people to browse Hackaday on their phones after lunch is less of a struggle. When the robots overthrow us, this will definitely be held against us.

We are not sure if this particular hardware will be open-source, probably not, but there is a lesson here about putting sensors where people will use them. Despite the low rank on the glamorous scale, from a UX point of view, it is ingenious. How can we flush out our own projects to make them usable? After all, if you build a badass morning alarm, but it tries to kill you, it will need some work and if you make a gorgeous clock with the numbers all messed up…okay, we dig that particular one for different reasons.

Via IEEE Spectrum.

Adaptive Spoon Helps Those With Parkinson’s

There are a lot of side effects of living with medical conditions, and not all of them are obvious. For Parkinson’s disease, one of the conditions is a constant hand tremor. This can obviously lead to frustration with anything that involves fine motor skills, but also includes eating, which can be even more troublesome than other day-to-day tasks. There are some products available that help with the tremors, but at such a high price [Rupin] decided to build a tremor-compensating utensil with off the shelf components instead.

The main source of inspiration for this project was the Liftware Steady, but at around $200 this can be out of reach for a lot of people. The core of this assistive spoon has a bill of material that most of us will have lying around already, in order to keep costs down. It’s built around an Arduino and an MPU6050 inertial measurement unit with two generic servo motors. It did take some 3D printing and a lot of math to get the utensil to behave properly, but the code is available on the project site for anyone who wants to take a look.

This project tackles a problem that we see all the time: a cost-effective, open-source solution to a medical issue where the only alternatives are much more expensive. Usually this comes up around prosthetics, but can also help out by making biological compounds like insulin directly for less than a medical company can provide it.

Continue reading “Adaptive Spoon Helps Those With Parkinson’s”

Tech Tattoos Trace Two Dimensions

Flexible circuit boards bend as you might expect from a playing card, while skin stretches more like knit fabric. The rules for making circuit boards and temporary tattoos therefore need to be different. Not just temporary tattoos, there are also circuits that reside on the skin so no unregulated heat traces, please. In addition to flexing and stretching, these tattoos can be applied to uneven surfaces and remain intact. Circuits could be added to the outside of projects or use the structure as the board to reduce weight and size. Both are possible with the research from Carnegie Mellon’s Soft Machines Lab and the Institute of Systems and Robotics at the University of Coimbra.

These circuits are an improvement over the existing method which relies on cropping away metal foil with a magnifying glass, tweezers and a steady hand. Instead, silver particles are printed with an inkjet printer before the traces are coated in eutectic gallium indium which is liquid metal at room temperature. If we were to oversimplify, we might describe it as similar to a non-toxic equivalent of mercury that we have also seen used in DIY OLEDs. This is a development likely to be interesting in a range of fields from medicine to cosplay.

Continue reading “Tech Tattoos Trace Two Dimensions”