Biodegradable Implants Supercharge Nerve Regeneration

Controlled electrical stimulation of nerves can do amazing things. It has been shown to encourage healing and growth in damaged cells of the peripheral nervous system which means regaining motor control and sensation in a shorter period with better results. This type of treatment is referred to as an electroceutical, and the etymology is easy to parse. The newest kid on the block just finished testing on rat subjects, applying electricity for one, three, or six days per week in one-hour intervals. The results showed that more treatment led to faster healing. The kicker is that the method of applying electricity was done through unbroken skin on an implant that dissolves harmlessly.

The implant in question is, at its most basic, an RFID tag with leads that touch the injured nerves. This means wireless magnetic coupling takes power from an outside source and delivers it to where it is needed. All the traces on are magnesium. There is a capacitor with silicon dioxide sandwiched between magnesium, and a diode made from a doped silicon nanomembrane. All this is encased in a biodegradable substrate called poly lactic-co-glycolic acid, a rising star for FDA-approved polys. Technologically speaking, these are not outrageous.

These exotic materials are not in the average hacker’s hands yet, but citizen scientists have started tinkering with the less invasive tDCS and which is applying a small electrical current to the brain through surface electrodes or the brain hacking known as the McCollough effect.

Via IEEE Spectrum.

Toilet Seat Could Save Your Ass

Our morning routine could be appended to something like “breakfast, stretching, sit on a medical examiner, shower, then commute.” If we are speaking seriously, we don’t always get to our morning stretches, but a quick medical exam could be on the morning agenda. We would wager that a portion of our readers are poised for that exam as they read this article. The examiner could come in the form of a toilet seat. This IoT throne is the next device you didn’t know you needed because it can take measurements to detect signs of heart failure every time you take a load off.

Tracking heart failure is not just one test, it is a buttload of tests. Continuous monitoring is difficult although tools exist for each test. It is unreasonable to expect all the at-risk people to sit at a blood pressure machine, inside a ballistocardiograph, with an oximeter on their fingers three times per day. Getting people to browse Hackaday on their phones after lunch is less of a struggle. When the robots overthrow us, this will definitely be held against us.

We are not sure if this particular hardware will be open-source, probably not, but there is a lesson here about putting sensors where people will use them. Despite the low rank on the glamorous scale, from a UX point of view, it is ingenious. How can we flush out our own projects to make them usable? After all, if you build a badass morning alarm, but it tries to kill you, it will need some work and if you make a gorgeous clock with the numbers all messed up…okay, we dig that particular one for different reasons.

Via IEEE Spectrum.

Adaptive Spoon Helps Those With Parkinson’s

There are a lot of side effects of living with medical conditions, and not all of them are obvious. For Parkinson’s disease, one of the conditions is a constant hand tremor. This can obviously lead to frustration with anything that involves fine motor skills, but also includes eating, which can be even more troublesome than other day-to-day tasks. There are some products available that help with the tremors, but at such a high price [Rupin] decided to build a tremor-compensating utensil with off the shelf components instead.

The main source of inspiration for this project was the Liftware Steady, but at around $200 this can be out of reach for a lot of people. The core of this assistive spoon has a bill of material that most of us will have lying around already, in order to keep costs down. It’s built around an Arduino and an MPU6050 inertial measurement unit with two generic servo motors. It did take some 3D printing and a lot of math to get the utensil to behave properly, but the code is available on the project site for anyone who wants to take a look.

This project tackles a problem that we see all the time: a cost-effective, open-source solution to a medical issue where the only alternatives are much more expensive. Usually this comes up around prosthetics, but can also help out by making biological compounds like insulin directly for less than a medical company can provide it.

Continue reading “Adaptive Spoon Helps Those With Parkinson’s”

Tech Tattoos Trace Two Dimensions

Flexible circuit boards bend as you might expect from a playing card, while skin stretches more like knit fabric. The rules for making circuit boards and temporary tattoos therefore need to be different. Not just temporary tattoos, there are also circuits that reside on the skin so no unregulated heat traces, please. In addition to flexing and stretching, these tattoos can be applied to uneven surfaces and remain intact. Circuits could be added to the outside of projects or use the structure as the board to reduce weight and size. Both are possible with the research from Carnegie Mellon’s Soft Machines Lab and the Institute of Systems and Robotics at the University of Coimbra.

These circuits are an improvement over the existing method which relies on cropping away metal foil with a magnifying glass, tweezers and a steady hand. Instead, silver particles are printed with an inkjet printer before the traces are coated in eutectic gallium indium which is liquid metal at room temperature. If we were to oversimplify, we might describe it as similar to a non-toxic equivalent of mercury that we have also seen used in DIY OLEDs. This is a development likely to be interesting in a range of fields from medicine to cosplay.

Continue reading “Tech Tattoos Trace Two Dimensions”

Eyes On The Prize Of Glucose Monitoring

People with diabetes have to monitor their blood regularly, and this should not be a shock to anyone, but unless you are in the trenches you may not have an appreciation for exactly what that entails and how awful it can be. To give a quick idea, some diabetics risk entering a coma or shock because drawing blood is painful or impractical at the moment. The holy grail of current research is to create a continuous monitor which doesn’t break the skin and can be used at home. Unaided monitoring is also needed to control automatic insulin pumps.

Alphabet, the parent company of Google, gave up where Noviosense, a Netherlands company owned by [Dr. Christopher Wilson], may gain some footing. Instead of contact lenses which can alter the flow of fluids across the eye, Noviosense places their sensor below the lower eyelid. Fluids here flow regardless of emotion or pain, so the readings correspond to the current glucose level. Traditionally, glucose levels are taken through blood or interstitial fluid, aka tissue fluid. Blood readings are the most accurate but the interstitial fluid is solid enough to gauge the need for insulin injection, and the initial trial under the eyelid showed readings on par with the interstitial measurements.

Hackers are not taking diabetes lying down, some are developing their own insulin and others are building an electronic pancreas.

Via IEEE Spectrum.

Kind of the Opposite of a Lightsaber

Lightsabers are an elegant weapon for a more civilized age. Did you ever consider that cutting people’s hands off with a laser sword means automatically cauterized wounds and that lack of blood results in a gentler rating from the Motion Picture Association? Movie guidelines aside, a cauterizing pen is found in some first aid kits, but at their core, they are a power source and a heating filament. Given the state of medical technology, this is due for an upgrade, and folks at Arizona State University are hitting all the marks with a combination of near-infrared lasers, gold particles, and protein matrix from silk.

Cauterizing relies on intense heat, or chemicals, to burn flesh but this process uses less power by aiming the near-IR laser at only the selected areas, and since near-IR can penetrate soft-tissue it goes deep without extra heating. The laser heats the gold, and that activates the silk proteins. Early results are positive but lots of testing remains and it still will not belong in the average first aid kit for a while, lasers and all, but surgery for beloved pets and tolerable humans could have recovery time reduced with this advance.

If this doesn’t sate your need for magical space knight weaponry, we have options aplenty.

Via IEEE Spectrum. Image: starwars.com

Infection? Your Smartphone Will See You Now

When Mr. Spock beams down to a planet, he’s carrying a tricorder, a communicator, and a phaser. We just have our cell phones. The University of California Santa Barbara published a paper showing how an inexpensive kit can allow your cell phone to identify pathogens in about an hour. That’s quite a feat compared to the 18-28 hours required by traditional methods. The kit can be produced for under $100, according to the University.

Identifying bacteria type is crucial to prescribing the right antibiotic, although your family doctor probably just guesses because of the amount of time it takes to get an identification through a culture. The system works by taking some — ahem — body fluid and breaking it down using some simple chemicals. Another batch of chemicals known as a LAMP reaction mixture multiplies DNA and will cause fluorescence in the case of a positive result.

Continue reading “Infection? Your Smartphone Will See You Now”