Save Data From Old Scopes With A GPIB Disk Emulator

If you still use old test equipment on a regular basis, you probably have been frustrated by the lack of options for pulling data off these aging devices. Many higher-end devices are equipped with GPIB ports, which are general purpose buses for communicating with a variety of obsolete peripherals. Since GPIB disk drives aren’t too common (or practical) these days, [Anders] made a GPIB adapter that emulates a disk drive and stores data to an SD card.

[Anders] designed a PCB with a PIC microcontroller that plugs into a GPIB port. The PIC emulates a disk drive using the AMIGO protocol or the SS/80 protocol, which can be selected in a configuration file on the SD card. Most test equipment supports one of these two protocols, so his adapter should work with pretty much any GPIB-equipped kit.

Data is saved to a single image file on the SD card, which is encoded in a native HP disk format. The image file can be opened on Windows and Linux with some utilities that [Anders] mentioned on his project page. If you have any old test equipment withGPIB lying around and want to build your own, the schematic and source code are up on his site or [Anders] is selling bare boards.

Now if it’s a protocol converter that you need we’ve seen those in a couple of different varieties.

GPIB To USB, With A Python API

If you’re not so daft as to think Arduino-based oscilloscopes and multimeters are actually useful for all but the simplest tests and measurements, you just might have some big iron sitting around your workbench from the likes of HP, or Tektronix. You might have noticed a strange port on the back of these machines, labeled GPIB or IEEE-488. This is the standard interface for these devices, and if you’ve ever priced out a USB to IEEE-488 converter, you can see why [Steven] thought it would be cheaper to build his own.

This build is an update to an earlier version we saw a few years ago. Since then, [Steven] has taken some advice from the community and replaced a bunch of resistors with proper GPIB line driver ICs, and generally cleaned up the firmware.

Because a USB to GPIB adapter is only one small part of the tools necessary to connect these old measurement devices to a modern computer, [Steven] has also been working on InstrumentKit. It’s a Python library that takes all the standardized instrument commands and wraps them up in an easy to use API. You can check out the docs for InstrumentKit here, or just look through the board files and firmware on the Github

GPIB Connectivity Twofer

Dust off that old GPIB hardware and hook it up to your modern computing platform using either of these two solutions. If you haven’t a clue what we’re talking about you probably don’t own any fifty-year-old test equipment. But the General Purpose Interface Bus (aka IEEE-488) was fairly common on 1960’s era test equipment like multimeters and logic analyzers.

[Sven Pauli] is responsible for the RS232 GPIB interface board (translated) in the upper left. It uses an ATmega16 and a couple of classic bus driver chips to get the job done.

To the lower right is a USB to GPIB converter board that [Steven Casagrande] developed. This one is PIC based, using the 18F4520 and an FTDI chip to handle the USB side of the equation.

Check out the connector that is used for this protocol. We’d bet that’s not the easiest part to source. But at least now you’ll know what you’re looking at when pawing through the flea market offerings.