Hackaday Prize Entry: Tongue Computer Interface

The Hackaday Prize is a celebration of the greatest hardware put together by the greatest hackers on the planet. If you go over the entries, you’ll find user interfaces for everything. Need a wheelchair controlled by eye gaze? That won last year. A foot controlled mouse? Done. Need a device to talk to the Internet while you’re in a lucid dream? We’ve seen that.

We’ve seen a lot of really cool, really strange stuff in the Hackaday Prize. We haven’t seen anything like Pallette, a finalist for the Assistive Technologies portion of this year’s prize. It’s a tongue-computer interface. You put Pallette in your mouth, like a retainer, and you can control a computer. Telekinesis with a tongue.

At its most basic level, Pallette is a Bluetooth mouse, hidden away behind the lower jaw. Infrared sensors triangulate the position of the tongue, and a microphone detects the tongue tapping on Pallette. Everything you can do with a mouse can be done with Pallette.

At first glance, Pallette seems to be just a little bit absurd. This idea changes when you see the video the Pallette team produced for the Hackaday Prize finals. Some people can’t use their arms, and for this, Pallette is a godsend. With this, anyone can use a computer, control a Sphero, or  fly a drone. It’s a completely novel device that can be used for anything, and an excellent example of what we’re looking for in the Hackaday Prize.

Continue reading “Hackaday Prize Entry: Tongue Computer Interface”

Hackaday Prize Entry: The Internet Of Casts

[Alex]’s entry for the Hackaday Prize is extremely simple: it’s a device to monitor the inside of casts. For every itch, for every broken bone, for every skin irritation, and for every episode of House that featured compartment syndrome, the CastMinder has an answer.

The CastMinder is a simple electronic device embedded inside an orthopedic cast. Attached to this tiny bit of electronics are a few sensors, relaying pressure, moisture, temperature, and of course the battery level to an iOS app. The use case for this device is actually very simple; the pressure sensor is a great idea if you have a cast and you’re unconscious in a hospital. A moisture sensor will at least tell you how many trash bags wrapped around your broken arm are necessary to take a shower.

The entire device is based on the LightBlue Bean, a tiny Bluetooth-enabled device that can be powered by a CR2032 battery. The enclosure is 3D printed, and the entire device is small enough to be embedded in a cast without the wearer noticing much. It’s a great idea, and a great project to make it to the semifinals of the Hackaday Prize.

Hackaday Prize Entry: A 3D Printed Prosthetic Foot

For the last few years of the Hackaday Prize, there have been more than a few prosthetic devices presented. Almost without exception, the target for these projects are prosthetic hands. That’s a laudable goal, but mechanically, at least, feet are much more interesting. A human foot must sustain more than the weight of the human it’s attached to, and when it comes to making this out of plastic and metal, that means some crazy mechanics.

This Hackaday Prize entry is a complete reversal of all the prosthetic limbs we’ve seen before. It’s a prosthetic foot, and in the tradition of easily made and easily modified prosthetic arms, this prosthetic foot is mostly 3D printed.

A foot will take a lot more abuse and weight than a hand, and because of this 3D printing all the parts might not seem like the best idea. Exotic filaments exist, though, and the team behind this project does have access to a few pieces of test equipment in a materials engineering lab. With the right geometry, everything seems to support the load required.

There are some relatively new twists to this 3D printed prosthetic foot, including electronic control, a micro-hydraulic power plant, and sensors to measure and adjust the user’s gait. It’s all very cool, and deserves a lot more engineering than even the most complicated 3D printed prosthetic hand.

Hackaday Prize Entry: FLipMouse

The theme of the last Hackaday Prize challenge was Assistive Technologies, and with this comes technical solutions for people with severe motor restriction. One of the best we’ve seen is a device designed to use a sip and puff interface and buttons to control a cursor through USB. The almost too clever name for a device meant to be used via fingers or lips is the FLipMouse, and right now it’s in the running for the finals in the Hackaday Prize.

The FLipMouse isn’t so much a mouse as it is a very long and very sensitive joystick. The main method of interaction is a long, hollow tube wrapped with force sensors. These force sensors, like those seen in the Nintendo Power Glove or this other Hackaday Prize entry, turn the tube into an exceptionally sensitive joystick, meant to be gripped by the user’s lips. This tube is hollow, too, so a sip-and-puff interface is used to register right and left clicks. Of course, there are a few external buttons that may be remapped to anything.

How useful is it? This mouth-based mouse seems to be exceptionally capable. In the video below, [Harry Hötzinger] plays a synthesizer live on stage using a step sequencer and a mouse-controlled synth interface. It’s all highly optimized for the specific piece of music, but it is an incredible display of what you can do with a laser cutter and a Digikey BOM.

Continue reading “Hackaday Prize Entry: FLipMouse”

Hackaday Prize Entry: A Cheap, Portable Incubator

Millions of premature babies are born every year, and more than a few of these births occur hours away from any hospital with a NICU. [Manoj]’s entry for the Hackaday Prize is a simple, but very useful primitive incubator. Is it as good as the incubators you would find in a world-class hospital? No, but that’s not the point. This is an incubator for the rest of the world, where neonatal care is lacking.

You’re not going to get mechanical respiration or even oxygen into a device that is meant for the most far-flung areas on the planet, so this incubator focuses almost solely on monitoring. Packed inside a premie-sized sleeping bag is enough electronics to measure heart rate, blood oxygen, temperature and respiration. Also, there are a few resistive fabric elements to turn electricity into warmth.

Of course, anything you would find in any hospital or clinic would greatly outclass what this project has to offer. That’s really not the point, though; this incubator is cheap, can be deployed anywhere, and provides enough information to hopefully keep a preterm child alive. That’s good enough for us, and makes for a great entry into the Hackaday Prize.

Hackaday Prize Entry: An Open Bluetooth Switch Interface

The theme of the last Hackaday Prize challenge was Assistive Technologies, and there is perhaps no assistive technology as desperately needed as a device to help people who can’t use common input devices. Using a keyboard, mouse, or touchscreen can be hard, but this Hackaday Prize project turns all these problems into a simple Bluetooth-enabled switch.

The BOSI – the Bluetooth Open Source Switch Interface – is, at its heart, just a big Bluetooth button inside a 3D-printed enclosure designed in Solidworks. These enclosures house a button connected to an Adafruit Bluefruit EZ-Key. Add a battery and a charging circuit, and you have a button that can be pressed by anyone, that connects to any device, and can do anything.

The real trick to a system like this is the software stack, and for this, BOSI can be used with iOS and OS X using the Switch Control interface. Android works, too, and the entire device is exceptionally usable for anyone that can’t use a normal input device. A great entry for the Hackaday Prize.

Hackaday Prize Entry: Hands|On Gloves Speaks Sign Language

The Hands|On glove looks like it’s a PowerGlove replacement, but it’s a lot more and a lot better. (Which is not to say that the Power Glove wasn’t cool. It was bad.) And it has to be — the task that it’s tackling isn’t playing stripped-down video games, but instead reading out loud the user’s sign-language gestures so that people who don’t understand sign can understand those who do.

The glove needs a lot of sensor data to accurately interpret the user’s gestures, and the Hands|On doesn’t disappoint. Multiple flex sensors are attached to each finger, so that the glove can tell which joints are bent. Some fingers have capacitive touch pads on them so that the glove can know when two fingers are touching each other, which is important in the US sign alphabet. Finally, the glove has a nine degree-of-freedom inertial measurement unit (IMU) so that it can keep track of pitch, yaw, and roll as well as the hand’s orientation.

In short, the glove takes in a lot of data. This data is cleaned up and analyzed in a Teensy 3.2 board, and sent off over Bluetooth to its final destination. There’s a lot of work done (and some still to be done) on the software side as well. Have a read through the project’s report (PDF) if you’re interested in support vector machines for sign classification.

Sign language is most deaf folks’ native language, and it’s a shame that the hearing community can’t understand it directly. Breaking down that barrier is a great idea, and it makes a great entry in the Hackaday Prize!