A Super Speedy Lightweight Lossless Compression Algorithm

[Dominic Szablewski] was tinkering around with compressing RGB images, when he stumbled upon idea of how to make a simple lossless compression algorithm, resulting in the Quite OK Image Format, which seems to offer comparable file sizes to the PNG format but is so simple it runs up to 50 times faster for compression and up to four times faster for decompression. Implementation can be achieved with a miniscule 300 lines of C. Need a bit more detail on the real-world performance? Well [Dominic] has that covered too, with a complete set of benchmarks for your perusal.

Image formats are one of those things these days that are designed by consortium, with so much complexity wedged in making it hard to implement with limited resources, so we find it very refreshing to see someone going back to basics and producing something super lightweight, and plenty good enough in practical terms.

Other uses for the algorithm could be for super simple video compression, for applications where resource is tight and some low-effort bandwidth reduction would be beneficial. Implementation in a small FPGA would also be quite straightforward, since the memory requirement is quite low also.

The project is very new and already there are some tweaks happening to the format, so the GitHub project code may change without warning to reflect any corrections [Dominic] feels necessary.

Thanks [David] for the tip!

Mythbusting Tidal’s MQA Format – How Does It Measure Up?

MQA is an audio format that claims to use a unique “origami” algorithm, promising better quality and more musicality than other formats. At times, it’s been claimed to be a lossless format in so many words, and lauded by the streaming services that use it as the ultimate format for high-fidelity music. With the format being closed source and encoders not publicly available, these claims are hard to test. However, [GoldenSound] wasn’t born yesterday, and set out to test MQA by hook or by crook. The results were concerning. (Video, embedded below.)

To actually put the format through its paces, the only easy way available was to publish music to the Tidal streaming service, which uses the format. [GoldenSound] went this route, attempting to get some test files published. This hit a brick wall when the publishing company reported that the MQA software “would not encode the files”. The workaround? [GoldenSound] simply cut some audio test content into the middle of an acoustic track and resubmitted the files, where they were accepted without further complaint.

Testing with the content pulled from Tidal, [GoldenSound] found concerning evidence that the claims made around MQA don’t stack up. Significant amounts of added noise are often found in the MQA-processed files, and files served from Tidal are clearly not lossless. Additionally, MQA’s “blue light” authentication system, designed to guarantee to listeners that they’re listening to a identical-to-studio release, is demonstrated to be misleading at best, if not entirely fake.

Upon writing to MQA to get a response to his findings, [GoldenSound]’s test files were quickly stripped from Tidal. The company eventually disputed some of the findings, which is discussed in the video. The general upshot is that without open, transparent tools being made publicly available to analyse the format’s performance, it’s impossible to verify the company’s claims.

We’ve had fun looking at audio formats before, from the history of MP3 to musing on digital audio at truly ridiculous sample rates. Continue reading “Mythbusting Tidal’s MQA Format – How Does It Measure Up?”