Gorgeous 6502 Celebrates Craftsmanship Of The Early Homebrewers

The days when a computer had a front panel bristling with switches and LEDs are long gone, and on balance that’s probably for the better in terms of ease of use, raw power, and convenience. That’s not to say there aren’t those who long for the days of flipping switches to enter programs, of course, but it’s a somewhat limited market. So unless you can find an old IMSAI or Altair, chances are you’ll have to roll your own — and you could do a lot worse than this aluminum beauty of a 6502 machine.

The machine is named PERSEUS-8 by its creator, [Mitsuru Yamada]. It follows earlier machines bearing the PERSEUS badge, all of them completely homebrewed and equally gorgeous. The PERSEUS-8 would have been an impressive machine had it come along 45 years ago — the 2 MHz version of the 6502, a full 16-bit memory address space, and 16 kB of battery-backed RAM. But the mechanical and electrical construction methods and the care and craftsmanship taken are where this build really shines. The case is fabricated out of aluminum sheets and angles and looks like it could have come from a server rack. The front panel is to die for — [Mitsuru] carefully brushed the aluminum before drilling the dozens of holes needed for the toggle switches and LEDs. And the insides are equally lovely — socketed chips neatly arranged on perfboard with everything wired up using period-correct wirewrap methods. Even the labels, both on the front panel and even on the motherboard, are a joy to behold.

Builds like this are the ones that really inspire us to take the extra steps needed to make our projects not only work, but also to be beautiful. We’ve seen this kind of craftsmanship from [Mitsuru] before — recall this serial terminal that never was, or the machine that came before the PERSEUS-8.

Compute Like It Is 1975: 6th Edition Unix Reborn

If you crave experiencing or reliving what computing was like “back then” you have a lot of options. One option, of course, is to load an emulator and pretend like you have the hardware and software you are interested in. Another often expensive option is to actually buy the hardware on the used market. However, [mit-pdos] has a different approach: port the 6th edition of Unix to RISC-V and use a modern CPU to run an old favorite operating system.

It isn’t an exact copy, of course, but Xv6 was developed back in 2006 as a teaching operating system at MIT. You can find resources including links to the original Unix source code, commentary on the source code, and information about the original PDP 11/40 host computer on the project’s main page.

Continue reading “Compute Like It Is 1975: 6th Edition Unix Reborn”

Build Your Own Bluetooth Notification Ticker

Stock tickers were telegraph-based machines from the 19th century, and quickly fell by the wayside with the advent of computer replacements from the 1960s onwards. However, there’s something charming about small machines that deliver us paper strips of information – as demonstrated by this notification ticker from [DIYprojects] (Russian language, Google Translate link).

The heart of the build is an Arduino Mini, which receives the text content of smartphone notifications via a Bluetooth module hooked up to its serial port. The machine mounts a small roll of paper strip, which is pulled along by a stepper motor fitted with a rubber earbud for added grip. The pen is moved along the paper by a servo using a Lambda mechanism to allow it to move nicely perpendicular to the paper’s direction of travel. Instead of moving the pen up and down, the paper is pushed into the pen by a solenoid mounted underneath.

It’s a fun little project, and one we can imagine being great for educational purposes. It teaches skills required to work with steppers, servos, solenoids and Bluetooth, all at once. It’s a little different from some other pen plotter designs, but the ticker format has a certain charm that’s hard to replicate any other way. Video after the break.

Continue reading “Build Your Own Bluetooth Notification Ticker”

A Hot-Swappable Battery Grip Keeps The Camera Rolling

There’s nothing worse than being in the middle of an important shot, only to have the camera’s batteries die on you. The losses can be very real, so it’s best to avoid them entirely. In an effort to do so, [funkster] built himself a battery grip for his Canon EOS M.

The hack is based around the venerable 18650 battery, packing 3.6V of lithium-ion goodness into a compact metal can. [funkster]’s build has slots for two of these cells, powering the camera off of one and keeping the other in reserve. The cells are monitored by a STM32 microcontroller, which switches from one battery to another as they run out or are removed. This allows batteries to be swapped while the camera is on – a highly useful feature. There’s even an OLED display to keep an eye on the state of charge of each cell.

The manner in which power is connected to the camera is rather amusing. An original Canon battery that slides inside the camera was gutted and turned into a simple adapter for the battery port. The battery grip, which wraps around the camera body, connects to this via pin headers that pass through a hole drilled in the camera’s case. It’s a permanent mod, but one [funkster] is happy with for the added usability – especially as doing it this way still provides easy access to the SD card slot.

Keeping a camera juiced on the go can be a headache without the right gear. [funkster] demonstrates that if you can’t buy it, you can always build it yourself. If your problem isn’t battery power, but your camera is overheating, you can of course fix that too. Video after the break.

Continue reading “A Hot-Swappable Battery Grip Keeps The Camera Rolling”

Ferrofluid Dances In Custom Bluetooth Speaker

Ferrofluids, as the name implies, are liquids that respond to magnetic fields. They were originally developed for use by NASA as rocket fuel but are available to the general public now for anyone who wants to enjoy their unique properties. For [Dakd Jung], that meant building a special chamber into a Bluetooth speaker that causes the ferrofluid inside to dance along with the rhythm of the music.

This project isn’t quite as simple as pushing the ferrofluid container against a speaker, though. A special electromagnetic device similar to a speaker was used specifically to manipulate the fluid, using a MSGEQ7 equalizer to provide the device with only a specific range of frequencies best tailored for the fluid’s movement. The project includes two speakers for playing the actual music that point upward, and everything is housed inside of a 3D-printed case. There were some additional hurdles to overcome as well, like learning that the glass needed a special treatment to keep the ferrofluid from sticking to it.

All in all it’s a unique project that not only brings sound to a room but a pleasing physical visualization as well. Being able to listen to music or podcasts on a portable speaker, rather than the tinny internal speakers of a phone or laptop, is the sort of thing you think you can live without until you get used to having higher quality sound easily and in every place you go. And, if there’s a way to improve on that small but crucial foundation with something like a dancing ferrofluid that moves with the music the speaker is playing, then we’re going to embrace that as well.

Hacking An Air Assist For The Ortur Laser

Getting great results from a laser cutter takes a bit of effort to make sure all of the settings are just right. But even then, if the air between the material and the laser source is full of smoke and debris it will interfere with the laser beam and throw off the results. The solution is to add air assist which continuously clears that area.

Earlier this year I bought an Ortur laser engraver/cutter and have been hacking on it to improve the stock capabilities. last month I talked about putting a board under the machine and making the laser move up and down easily. But I still didn’t have an air assist. Since then I found a great way to add it that will work for many laser cutter setups.

I didn’t design any of these modifications, but I did alter them to fit my particular circumstances. You can find my very simple modifications to other designs on Thingiverse. You’ll also find links to the original designs and you’ll need them for extra parts and instructions, too. It is great to be able to start with work from talented people and build on each other’s ideas.

Continue reading “Hacking An Air Assist For The Ortur Laser”

BMW Pushing Hard For Solid-State Battery Tech; Plans Demo By 2025

Plenty of development is ongoing in the world of lithium batteries for use in electric vehicles. Automakers are scrapping for every little percentage gain to add a few miles of range over their competitors, with efforts to reduce charging times just as frantic as well.

Of course, the real win would be to succeed in bringing a bigger, game-changing battery to market. Solid state batteries fit the bill, potentially offering far greater performance than their traditional lithium counterparts. BMW think there’s merit in the technology, and have announced they intend to show off a solid-state battery vehicle by 2025.

Continue reading “BMW Pushing Hard For Solid-State Battery Tech; Plans Demo By 2025”