Underwater Kites Buoying The Prospect Of More Tidal Power Generation

Swedish start-up Minesto has been for years trying to float the idea of having underwater turbines that generate power for use on-shore. These would be anchored to the seafloor by a long tether and move around in figure-of-eight patterns like a kite, which would increase the flow over the turbine’s blades. After a few years of trials, its 1.2 MW Dragon 12 kite will now be installed off the coast of the Faroe Islands.

Previously, Minesto had installed its much smaller DG500 (0.5 MW) kite turbine at Holyhead Deep, in Wales, where a single unit has been tested at a depth of between 65 and 91 meters. So far, only this unit has seen continuous operation. As noted in the linked Tethys report, this one unit was not connected to the grid, and research on its environmental impact is still ongoing as of September 2022. The main concerns are how it might affect cetaceans (whales, dolphins, etc.), including potential collisions with these as well as diving birds who might end up diving in the midst of a swarm of kites moving about at fairly high speeds.

One of the proposed Minesto Dragon 12 kite array installation sites at the Faroe Islands. (Credit: Minesto)
One of the proposed Minesto Dragon 12 kite array installation sites at the Faroe Islands. (Credit: Minesto)

Although by itself putting a turbine into the much stronger and energetic ocean currents – not to mention near-continuous – makes sense, the marine environment is a tough one to survive. The DG500 prototype has seen a few years of use, but this would be the first large-scale deployment of such a system and thus the first significant long-term durability test. The goal at the Faroe Islands is to install 120 MW of capacity, across four kite groups, joining the smaller Dragon 4 (0.4 MW) unit that was grid-connected in May of last year.

Depending on the results, including the economics, this technology could prove to be either much better and cheaper than off-shore wind turbines, or turn out to be saddled with fundamental flaws that has plagued previous attempts to make use of the strong currents and tides that make the world’s oceans and seas into one of Nature’s most impressive sights.

Faster Glacier Melting Mechanism Could Cause Huge Sea Level Rises

When it comes to the issue of climate change, naysayers often contend that we have an incomplete understanding of the Earth’s systems. While humanity is yet to uncover all the secrets of the world, that doesn’t mean we can’t act on what we know. In many cases, as climate scientists delve deeper, they find yet more supporting evidence of the potential turmoil to come.

In the stark landscapes of Greenland, a team of intrepid researchers from the University of California, Irvine, and NASA’s Jet Propulsion Laboratory have unearthed a hidden facet of ice-ocean interaction. Their discovery could potentially flip our understanding of sea level rise on its head.

Continue reading “Faster Glacier Melting Mechanism Could Cause Huge Sea Level Rises”

Mythbusting Tidal’s MQA Format – How Does It Measure Up?

MQA is an audio format that claims to use a unique “origami” algorithm, promising better quality and more musicality than other formats. At times, it’s been claimed to be a lossless format in so many words, and lauded by the streaming services that use it as the ultimate format for high-fidelity music. With the format being closed source and encoders not publicly available, these claims are hard to test. However, [GoldenSound] wasn’t born yesterday, and set out to test MQA by hook or by crook. The results were concerning. (Video, embedded below.)

To actually put the format through its paces, the only easy way available was to publish music to the Tidal streaming service, which uses the format. [GoldenSound] went this route, attempting to get some test files published. This hit a brick wall when the publishing company reported that the MQA software “would not encode the files”. The workaround? [GoldenSound] simply cut some audio test content into the middle of an acoustic track and resubmitted the files, where they were accepted without further complaint.

Testing with the content pulled from Tidal, [GoldenSound] found concerning evidence that the claims made around MQA don’t stack up. Significant amounts of added noise are often found in the MQA-processed files, and files served from Tidal are clearly not lossless. Additionally, MQA’s “blue light” authentication system, designed to guarantee to listeners that they’re listening to a identical-to-studio release, is demonstrated to be misleading at best, if not entirely fake.

Upon writing to MQA to get a response to his findings, [GoldenSound]’s test files were quickly stripped from Tidal. The company eventually disputed some of the findings, which is discussed in the video. The general upshot is that without open, transparent tools being made publicly available to analyse the format’s performance, it’s impossible to verify the company’s claims.

We’ve had fun looking at audio formats before, from the history of MP3 to musing on digital audio at truly ridiculous sample rates. Continue reading “Mythbusting Tidal’s MQA Format – How Does It Measure Up?”