A Portable, Accurate, Low-Cost, Open Source Air Particle Counter

If you live in a city with poor air quality you may be aware that particulates are one of the chief contributors to the problem. Tiny particles of soot from combustion, less than 10μm across, hence commonly referred to as PM10. These are hazardous because they can accumulate deep in the lungs, wherein all kinds of nasties can be caused.

There are commercial sensors available to detect and quantify these particles, but they are neither inexpensive nor open source. [Rundong] tells us about a project that aims to change that situation, the MyPart, which is described as a portable, accurate, low-cost, open source air particle counter. There is a GitHub repository for the project as well as a series of Instructables covering the build in detail. It comes from a team of members of the Hybrid Ecologies Lab at UC Berkeley, USA.

Along the way, they provide a fascinating description of how a particulate sensor works. A laser shines at right angles across a photodiode, and is brought to a focal point above it. Any particulates in the air will scatter light in the direction of the photodiode, which can thus detect them. The design of a successful such sensor requires a completely light-proof chamber carefully built to ensure a laminar flow of air past laser and diode. To that end, their chamber has several layers and is machined rather than 3D-printed for internal smoothness.

We’ve covered quite a few environmental sensors over the years here at Hackaday. An open source volatile organic compound (VOC) detector featured last year for example, or this Raspberry Pi-based  system using a commercial gas sensor.

Watch Those VOCs! Open Source Air Quality Monitor

Ever consider monitoring the air quality of your home? With the cost of sensors coming way down, it’s becoming easier and easier to build devices to monitor pretty much anything and everything. [AirBoxLab] just released open-source designs of an all-in-one indoor air quality monitor, and it looks pretty fantastic.

Capable of monitoring Volatile Organic Compounds (VOCs), basic particulate matter, carbon dioxide, temperature and humidity, it takes care of the basic metrics to measure the air quality of a room.

Exploded CAD View

All of the files you’ll need are shared freely on their GitHub, including their CAD — but what’s really awesome is reading back through their blog on the design and manufacturing process as they took this from an idea to a full fledged open-source device.

Did we mention you can add your own sensors quite easily? Extra ports for both I2C and analog sensors are available, making it a rather attractive expandable home sensor hub.

To keep the costs down on their kits, [AirBoxLab] relied heavily on laser cutting as a form of rapid manufacturing without the need for expensive tooling. The team also used some 3D printed parts. Looking at the finished device, we have to say, we’re impressed. It would look at home next to a Nest or Amazon Echo. Alternatively if you want to mess around with individual sensors and a Raspberry Pi by yourself, you could always make one of these instead.