Social Networking Robot Actually Respects Privacy

[Fribo] the robot is a research project in the form of an adorable unit that hears and speaks, but doesn’t move. Moving isn’t necessary for it to do its job, which is helping people who live alone feel more connected with their friends. What’s more interesting (and we daresay, unusual) is that it does this in a way that respects and maintains individuals’ feelings of privacy. To be a sort of “social connector and trigger” between friends where every interaction is optional and opt-in was the design intent behind [Fribo].

The device works by passively monitoring one’s home and understands things like the difference between opening the fridge and opening the front door; it can recognize speech but cannot record and explicitly does not have a memory of your activities. Whenever the robot hears something it recognizes, it will notify other units in a circle of friends. For example, [Fribo] may suddenly say “Oh, one of your friends just opened their refrigerator. I wonder what food they are going to have?” People know someone did something, but not who. From there, there are two entirely optional ways to interact further: knocking indicates curiosity, clapping indicates empathy, and doing either reveals your identity to the originator. All this can serve as an opportunity to connect in some way, or it can just help people feel more connected to others. The whole thing is best explained by the video embedded below, which shows several use cases.

Continue reading “Social Networking Robot Actually Respects Privacy”

Dumb Down Your Xiaomi Smart Lamp With A Custom Firmware

Undoubtedly, the ESP8266’s biggest selling point is its WiFi capability for a ridiculously low price. Paranoid folks probably await the day its closed-source firmware bits will turn against humanity in a giant botnet, but until then, hobbyists and commercial vendors alike will proceed putting them in their IoT projects and devices. One of those devices is the Yeelight desk lamp that lets you set its color temperature and brightness via mobile app.

[fvollmer] acquired such a lamp, and while he appreciated its design and general concept, he wasn’t happy that it communicates with external servers. So he did the only reasonable thing and wrote his own firmware that resembles the original functionality, but leaves out the WiFi part. After all, the ESP8266 has still a lot to offer in its core essence: a full-blown 32-bit microcontroller with support for the most common, hobbyist-friendly SDKs.

The lamp’s color temperature and brightness are set with a rotary encoder / push button combo switch, and the LEDs themselves are controlled via PWM. All things considered, it’s a rather straightforward endeavour, for which [fvollmer] chose the standalone C SDK. And in the end, it’s not like he’s unreasonably cautious to keep some control over his household items.

Ground-Effect Lighting For Your Bed.

If you’ve ever disturbed your partner by getting up during the night and flicking on the bathroom light — or tripping over something and startling them awake completely in the ensuing catastrophe — [Kristjan Berce]’s idea to install motion-activated ground-effect lighting on his girlfriend’s bed might hold your attention.

[Berce] is using an Arduino Nano for the project’s brain, a PIR sensor from Adafruit, and an L7805 voltage regulator to handle load spikes.  He doesn’t specify the type of LED strip he’s using, but Neopixels might be a safe bet here. Soldering issues over with, he mounted his protoboard in a 3D printed project box. Instead of reinventing the LED, [Berce] copied the code from Adafruit’s PIR tutorial before sticking the project to the side of the bed with adhesive strips so the on/off switch within handy reach to flick before meeting Mr. Sandman. Check out the build video after the break!

Continue reading “Ground-Effect Lighting For Your Bed.”

Is That A Mars Habitat? A Submarine? A Spaceship? Nope: It’s Home.

[Jan Körbes], an architect living with his daughter in Berlin, specializes in recycling materials. Inspired by discarded grain silos he saw across the Netherlands, he converted one into a micro-home that you would almost expect to see on the surface of mars. The guided tour in the video below give a pretty good feel for the space station feel of the abode.

A lot of the silo house’s design was inspired by [Körbes’] childhood of growing up on boats. It’s exceptionally functional and nearly every nook and cranny of the home can be altered, repurposed, and changed back. For instance: the two pantries on the main floor used to the toilet and shower, but since the silo home is currently set up at ZK/U — Center for Arts and Urbanistics in Berlin — they make use of the facilities there instead.

True to his specialization of creative recycling , a lot of the materials for the house were either donated, or bought at a steep discount due to various reasons. For instance, the windows were a small, unpopular size for most houses but work well here. This led to an evolving design of the house as it was being built, but everything [Körbes] and his daughter need is present inside of fourteen square metres on three floors.

Under the floor on the main level is a bathtub with infrared heating — the cover doubling as the dining table with feet dangling into the tub underneath. The kitchen has a small oven, an old camp stove, and fridge — enough for two people — and the sink uses a foot-activated button so the [Körbes’] use only as much water as they need. A nearby small wood stove with an extendable wood storage basket heats the space.

The house’s electrical (including a solar battery) and water systems are tucked into the basement beside the books, keeping the heavier objects low in such a tall and narrow dwelling. Larger rainwater collection tanks (a hack we’re quite fond of) surrounding the silo house also add ballast in case of storm.

With a two metre ceiling height on the main floor and nearly as much in the bunking quarters upstairs — accessed by a climbing wall, [Körbes] says the space feels much larger than you would expect. Large enough, at least, to host a standing record of a 38-person party. It’s fun to see the ingenuity that goes into tiny living space design. If you missed it, check out these CNC plywood designs for building homes.

Continue reading “Is That A Mars Habitat? A Submarine? A Spaceship? Nope: It’s Home.”

IoT Chore Reminder for the Serially Forgetful

The secret to domestic bliss often lies in attention to detail, an area in which we can all do a little better. But if paper notes and smartphone reminders are not enough to help you remember to knock jobs off your list, perhaps this IoT task reminder will give you the edge you need to keep the peace at home.

As [Andreas Spiess] points out, his best intentions of scheduling recurring tasks in Google Calendar were not enough to keep him on on top of his share of chores around the house. He found that the notifications popping up on his phone were far too easy to swipe away in favor of other distractions, so he set about building a real-world reminder. His solution uses a WeMOS D1 Mini in a bright blue 3D-printed box with from one to four LED switches on the front. Each box is linked to his Google Calendar, and when a task comes due, its light turns on. Sprinkled about the house near the task, like the laundry room or near the recycling, [Andreas] can’t help but see the reminder, which only goes out when he cancels it by pressing the task button. Simple but effective, and full of potential for other uses too.

Of course, the same thing could be accomplished with a Magic Mirror build, which we’ve seen a lot of over the years. But there’s something about the simplicity of these devices and their proximity to the task that makes sense — sort of like the Amazon Dash concept. We might build a few of these too.

Continue reading “IoT Chore Reminder for the Serially Forgetful”

Secret Book Light Switch

You enter a study and see a lightbulb hanging on the bookshelf. You try all the switches in the room — nothing is turning it on. Remembering you’re in [lonesoulsurfer]’s home, you realize that you’re going to have to start yanking on every book in sight.

While often associated with the likes of Bat-caves and other complicated hidden passageways, turning a shelved book into a secret switch isn’t complex in its own right. [lonesoulsurfer] is basing their build on one by B.Light Design revolving around a fan switch, some aluminium strips, a block terminal, fishing line, a hinge, and — of course — a book with a dust jacket and something to trigger.

Bend the aluminium into an angle bracket and drill a hole to attach the fan switch — ensuring the whole is small enough to fit behind and not distinguish the book you’re using. Cutting the hinge to the size of the book and screwing a strip of aluminium to it, both this lever and the fan switch’s bracket are then mounted on the shelf. Once a length of fishing twine is tethered to the lever and fitted through the book’s pages to the fan switch — ensuring the line is taut — sliding the dust jacket back onto the book completes the disguised switch!

Continue reading “Secret Book Light Switch”

Robotic Wood Shop Has Ambitions To Challenge IKEA

Many people got their start with 3D printing by downloading designs from Thingiverse, and some of these designs could be modified in the browser using the Thingiverse Customizer. The mechanism behind this powerful feature is OpenSCAD’s parametric design capability, which offers great flexibility but is still limited by 3D printer size. In the interest of going bigger, a team at MIT built a system to adopt parametric design idea to woodworking.

The “AutoSaw” has software and hardware components. The software side is built on web-based CAD software Onshape. First the expert user builds a flexible design with parameters that could be customized, followed by one or more end users who specify their own custom configuration.

Once the configuration is approved, the robots go to work. AutoSaw has two robotic woodworking systems: The simpler one is a Roomba mounted jigsaw to cut patterns out of flat sheets. The more complex system involves two robot arms on wheels (Kuka youBot) working with a chop saw to cut wood beams to length. These wood pieces are then assembled by the end-user using dowel pegs.

AutoSaw is a fun proof of concept and a glimpse at a potential future: One where a robotic wood shop is part of your local home improvement store’s lumber department. Ready to cut/drill/route pieces for you to take home and assemble.

Continue reading “Robotic Wood Shop Has Ambitions To Challenge IKEA”