Espresso Machine Now Powers Plants

This thing has what plants crave! No, not electrolytes exactly — just water, light, and moisture polling every 30 minutes. We think it’s fitting to take something that once manufactured liquid liveliness for humans and turn it into a smart garden that does the same thing for plants.

So let’s just get this out of the way: the espresso machine was abandoned because it was leaking water from a gasket. [The Plant Bot] cleaned it up, replaced the gasket, and got it brewing, and then it started leaking hot water again from the same gasket. We might have gone Office Space on this beautiful machine at that point, but not [The Plant Bot].

Down in the dirt, there’s a soil moisture sensor that’s polling every 30 minutes. If the moisture level falls below the threshold set appropriately at a life-sustaining 42%, the Arduino is triggered to water the plant through a relay board using the espresso machine’s original pump. If the plant is dry, the machine will pump water for two seconds every minute until the threshold is met. [The Plant Bot] tied it all together with a nice web interface that shows plant data and allows for changes over Bluetooth.

[The Plant Bot] started by disconnecting the heating element, because plants don’t tend to like hot steam. But if the cup warming tray along the top has a separate heating element, it might be neat to reuse it for something like growing mushrooms, or maintaining a sourdough starter if the temperature is right.

Via r/duino

Vinduino Water-Smart Farming – Now With LoRa!

Our five rounds of Hackaday Prize 2018 challenges have just wrapped up, and we’re looking forward to see where the chips fall in the final ranking. While we’re waiting for the winners to be announced at Hackaday Superconference, it’s fun to take a look back at one of our past winners. Watch [Reinier van der Lee] give the latest updates on his Vinduino project (video also embedded after the break) to a Hackaday Los Angeles meetup earlier this year.

Vinduino started with [Reinier]’s desire to better understand what happens to irrigation water under the surface, measuring soil moisture at different depths. This knowledge informs more efficient use of irrigation water, as we’ve previously covered in more detail. What [Reinier] has been focused on is improving usability of the system by networking the sensors wirelessly versus having to walk up and physically attach a reader unit.

His thought started the same as ours – put them on WiFi! But adding WiFi coverage across his entire vineyard was not going to be cost-effective. After experimenting with various communication schemes, he has settled on LoRa. Designed to trade raw bandwidth for long range with low power requirements, it is a perfect match for a network of soil moisture sensors.

In the video [Reinier] gives an overview of LoRa for those who might be unfamiliar. Followed by results of his experiments integrating LoRa functionality into Vinduino, and ending with a call to action for hackers to help grow the LoRa network. It sounds like he’s become quite the champion for the cause! He’s even giving a hands-on workshop at Supercon where you can build your own LoRa connected sensor. (Get tickets here.)

We’re always happy to see open-source hardware projects like Vinduino succeed, transitioning to a product that solve real world problems. We know there are even more promising ideas out there, which is why Hackaday’s sister company Tindie is funding a Project to Product program to help this year’s winners follow in Vinduino’s footsteps. We look forward to sharing more success stories yet to come.

Continue reading “Vinduino Water-Smart Farming – Now With LoRa!”

Automatic Plant Care Minus The Microcontroller

Plants are a nice addition to most any habitat. Many of them bear flowers or attractive foliage, some of them help filter the air, and others, like aloe vera, have medicinal properties. While some plants require very little care, they all need a little moisture at some point. Overall, plant care is a bit fiddly: water them too much and you run the risk of root rot; water too little and risk death by dehydration. Hackaday alum [Kevin Darrah] would prefer not to gamble with either condition, and so in the course of a weekend’s time, he constructed a solar-powered automatic plant watering system from components he had on hand.

While he likely had a microcontroller or two lying around, he didn’t use one. His is a system of MOSFETs that trigger a motorized pump from one of those automatic bug spray bottles to draw from a reservoir and water the plant. The solar panel charges a bank of 6800µF capacitors that [Kevin] took out of an old receiver. When the desired charge is reached, the small soil sensor module is powered, assessing the moisture level. If the level is below the threshold determined by a trimmer pot, the power from the capacitor bank is dumped to the water pump and his plant gets a drink.

[Kevin]’s design deals nicely with the possible pitfalls of solar power. He’s included a 0.1µF cap to ensure latching through the system, and added a bleed resistor so that the pump is never powered unnecessarily. After running it for a couple of days, he’s already seeing moisture regulation in the soil. His complete demonstration and theory of operation is after the break. If you’re into solar power but aren’t quite ready to ditch the µC, check out this Arduino-controlled solution for thirsty tomatoes or this PIC-powered plant pacifier.

Continue reading “Automatic Plant Care Minus The Microcontroller”