A Long-Range Meshtastic Relay

In the past few years we’ve seen the rise of low-power mesh networking devices for everything from IoT devices, weather stations, and even off-grid communications networks. These radio modules are largely exempt from licensing requirements due to their low power and typically only operate within a very small area. But by borrowing some ideas from the licensed side of amateur radio, [Peter Fairlie] built this Meshtastic repeater which can greatly extend the range of his low-power system.

[Peter] is calling this a “long lines relay” after old AT&T microwave technology, but it is essentially two Heltec modules set up to operate as Meshtastic nodes, where one can operate as a receiver while the other re-transmits the received signal. Each is connected to a log-periodic antenna to greatly increase the range of the repeater along the direction of the antenna. These antennas are highly directional, but they allow [Peter] to connect to Meshtastic networks in the semi-distant city of Toronto which he otherwise wouldn’t be able to hear.

With the two modules connected to the antennas and enclosed in a weatherproof box, the system was mounted on a radio tower allowing a greatly increased range for these low-power devices. If you’re familiar with LoRa but not Meshtastic, it’s become somewhat popular lately for being a straightforward tool for setting up low-power networks for various tasks. [Jonathan Bennett] explored it in much more detail as an emergency communications mode after a tornado hit his home town.

Continue reading “A Long-Range Meshtastic Relay”

LoRA, With No Radio

A LoRa project has traditionally required a dedicated radio module, because it’s a commercially licenced protocol. But as the way it works has been progressively reverse engineered, it’s become ever more possible to produce a LoRA radio for yourself. But what about a LoRA radio without a radio at all? [CNLohr] has managed just that, by driving a microcontroller pin and relying on one of its harmonics to provide enough RF to be received by a LoRA gateway.

The video below the break goes into the process in great detail, revealing some of the tricks. Undersampling to create intentional aliasing for example allows subharmonic peaks to be produced in unexpected places. Most of the development is performed on Espressif microcontrollers, but as the code is optimised it becomes possible to use it on much more modest silicon. The dirt cheap CH32V003 RISC-V microcontroller for example can be a LoRA transmitter able to talk to a gateway at a range of hundreds of metres with the CH32 and 2.5km with the ESP32. The code can be found in this GitHub repository.

The CH32 can’t receive of course, and it relies on barfing harmonics all over the spectrum to work. But on the other hand its total RF output is so tiny that we’re guessing a filter for the LoRA band might even make it almost legal. He’s got a little way to go before beating the record though.

Continue reading “LoRA, With No Radio”

A portable digital radio transceiver in a 3d printed case

RNODE: A Portable Unrestricted Digital Radio

RNode is an open source, unrestricted digital radio transceiver based on — but not limited to — the Reticulum cryptographic networking stack. It is another interesting project in what we might call the “Federated application” space in that it is intended to be used with no central controlling body. It can be used in a LAN or WAN context with the Reticulum network when operating in network adaptor mode, but it also has other use cases.

Essentially, RNode is a software project running on a LilyGO LoRa32 board wrapped up in a snazzy-looking 3D-printed case. Just make sure to grab a version of the board with an u.FL connector in place or somewhere to solder one. If it comes with an SMA connector, you will want to remove that. The device can be standalone, perhaps attached to a mobile device via Wi-Fi, but it needs to be hooked up to a laptop for the really interesting applications. When set to TNC mode, it can act as an APRS gateway, which allows you to access packet radio BBSs and all that fun stuff.

Continue reading “RNODE: A Portable Unrestricted Digital Radio”

Custom Library Rescues Good LoRa Hardware From Bad Firmware

The range of hardware that comes on some dev boards these days is truly staggering. Those little LoRa boards are a prime example — ESP32 with WiFi and Bluetooth, a transceiver that covers a big chunk of the UHF band, and niceties like OLED displays and plenty of GPIO. But the firmware and docs? Well, if you can’t say something nice, don’t say anything at all. Or better yet, just roll your own.

Of course that doesn’t hold true for all the LoRa dev boards on the market, but [Rop] certainly found it to be the case for the Heltec HTIT-WB32LA. This board has all the bells and whistles and would be perfect for LoraWAN and Meshtastic applications, but it needed a little help getting it over the line. [Rop]’s contribution to this end is pretty comprehensive and is based on his fork of the RadioLib library, which incorporates a library that greatly reduces wear on the ESP32’s flash memory. In addition to full radio support, the library supports all the hardware on the board from the pushbutton to the display, power management and battery charging, and of course the blinkenlights.

[Jop] includes quite a few example applications, from the bare minimum needed to get the board spun up to a full-blown spectrum analyzer. It’s a nice piece of work, and a great give-back to the LoRa community. And if you want to put one of these modules to work, you’re certainly in the right place. We’ve got everything from LoRaWAN networks to the magic of Meshtastic, so take your pick and get hacking.

Garden Light Turned Mesh Network Node

We love a good deal, especially when it comes to scavenging parts for projects. Cheap outdoor solar lights are more than just garden accessories; they’re a handy source of waterproof enclosures, solar panels and batteries. This is demonstrated by [Tavis], who turned one such light into a Meshtastic LoRa communication node.

Solar Light With Meshtastic node inside
Where there’s an antenna, there’s a radio

A nice feature on this specific $15 Harbor Breeze Solar LED is the roomy solar panel enclosure with integrated 18650 battery holder, allowing for easy battery swaps. [Tavis] was able to easily fit the RAKwireless modular dev board, and wire it into the light’s charging circuit. The cheap  circuit is likely not the most efficient, but will probably get the job done. It’s always possible to just swap it out with a better charging board. [Tavis] also added an external antenna by using a panel-mount SMA pigtail connector.

The Meshtastic project is all about enabling text-only communications through LoRa-based mesh networks, built using off-the-shelf devices and development boards that won’t break the bank. The project has seen some incredible growth, with people all over the world setting up their own networks.

It’s not the first time we’ve seen garden lights get used in project. We’ve seen MQTT added to a PIR solar light with some clever power saving circuitry, and as a power source for Attiny85-based projects.

Radiochat Is A Simple LoRa Interface Over WiFi

LoRa is often talked about as a potentially useful solution for emergency communication. The problem is, few of us are running around with LoRa hardware on a day-to-day basis. Student [William Barkoff] designed the Radiochat device as a simple tool that could pair with virtually anything over WiFi, and allow it to send and receive LoRa messages.

Radiochat is based on the Raspberry Pi Pico W, and uses the microcontroller’s wireless hardware to communicate with other devices. It provides a WiFi network that devices like laptops or smartphones can connect to. The Pico serves up a simple web page which accepts text input. Type in a message and hitting enter and the Pico will command a LoRa radio module over SPI to send that message out over the airwaves. It can then be picked up by another Radiochat module which displays the message on its own webpage.

It’s in an early state of development, and the demo video shows there are still some bugs to work out. Ultimately, though, it could be a cheap battery-powered device that lets smartphones and laptops chat over LoRa in remote areas. Indeed, [William’s] trips to New Mexico on model rocketry expeditions were a big inspiration for the project.

Continue reading “Radiochat Is A Simple LoRa Interface Over WiFi”

The measurement results of: (a) RSSI in dBm collected from gateway 2 and (b) soil moisture during the winter period. (Credit: Maja Škiljo et al., 2022)

Using LoRa Nodes As Soil Moisture Sensing Antennas

Implementation of LoRaWAN-based soil moisture sensing device. (Credit: Maja Škiljo et al., 2022)
Implementation of LoRaWAN-based soil moisture sensing device. (Credit: Maja Škiljo et al., 2022)

Although we generally think of Internet of Things (IoT) and similar devices as things that are scattered around above ground, there are plenty of reasons to also have such devices underground. These so-called IoUT devices are extremely useful when it comes to monitoring underground structures, but communication via radiowaves is obviously impacted when soil is in the way. Although there are ways to get around this, a 2022 paper by Maja Škiljo and colleagues in Sensors covers an interesting way to make use of this signal attenuation property of changing moisture levels in soil.

By quantifying the exact attenuation of the signal received at the gateways, they were able to determine the soil moisture levels around the LoRa node which had been buried at a depth of approximately 14 centimeters. This LoRa node used off-the-shelf components consisting of an ATmega328P-based Arduino Pro Mini and SX1276-based RFM95W LoRa module with a spring antenna.

During experimentation in- and outdoors it was determined that a narrowband, printed (PCB) antenna was optimal for soil moisture sensing purposes. Other than the interesting question of how to keep soil moisture sensing nodes like this powered up over long periods of time (perhaps periodic retrieval to replenish the battery), this would seem to be a very interesting way to monitor the soil moisture levels in something like a field, where each node can provide its own ID and the received signal providing the relevant data in the form of the SNR and other parameters recorded by the gateway.

(Heading image: The measurement results of: (a) RSSI in dBm collected from gateway 2 and (b) soil moisture during the winter period. (Credit: Maja Škiljo et al., 2022) )