Badge Bling And More At LayerOne 2018

The security conference LayerOne 2018 took place this past weekend in Pasadena, California. A schedule conflict meant most of our crew was at Hackaday Belgrade but I went to LayerOne to check it out as a first-time attendee. It was a weekend full of deciphering an enigmatic badge, hands-on learning about physical security, admiring impressive demos, and building a crappy robot.

Continue reading “Badge Bling And More At LayerOne 2018”

Hacking for Learning and Laughs: The Makers of Oakwood School

The tagline of Bay Area Maker Faire is “Inspire the Future” and there was plenty of inspiration for our future generation. We have exhibits encouraging children to get hands-on making projects to call their own, and we have many schools exhibiting their student projects telling stories of what they’ve done. Then we have exhibitors like Oakwood School STEAM Council who have earned a little extra recognition for masterfully accomplishing both simultaneously.

[Marcos Arias], chair of the council, explained that each exhibit on display have two layers. Casual booth visitors will see inviting hands-on activities designed to delight kids. Less obvious is that each of these experiences are a culmination of work by Oakwood 7th to 12th grade students. Some students are present to staff activities and they were proud to talk about their work leading up to Maker Faire with any visitors who expressed interest.

Continue reading “Hacking for Learning and Laughs: The Makers of Oakwood School”

Modern Wizard Summons Familiar Spirit

In European medieval folklore, a practitioner of magic may call for assistance from a familiar spirit who takes an animal form disguise. [Alex Glow] is our modern-day Merlin who invoked the magical incantations of 3D printing, Arduino, and Raspberry Pi to summon her familiar Archimedes: The AI Robot Owl.

The key attraction in this build is Google’s AIY Vision kit. Specifically the vision processing unit that tremendously accelerates image classification tasks running on an attached Raspberry Pi Zero W. It no longer consumes several seconds to analyze each image, classification can now run several times per second, all performed locally. No connection to Google cloud required. (See our earlier coverage for more technical details.) The default demo application of a Google AIY Vision kit is a “joy detector” that looks for faces and attempts to determine if a face is happy or sad. We’ve previously seen this functionality mounted on a robot dog.

[Alex] aimed to go beyond the default app (and default box) to create Archimedes, who was to reward happy people with a sticker. As a moving robotic owl, Archimedes had far more crowd appeal than the vision kit’s default cardboard box. All the kit components have been integrated into Archimedes’ head. One eye is the expected Pi camera, the other eye is actually the kit’s piezo buzzer. The vision kit’s LED-illuminated button now tops the dapper owl’s hat.

Archimedes was created to join in Google’s promotion efforts. Their presence at this Maker Faire consisted of two tents: one introductory “Learn to Solder” tent where people can create a blinky LED badge, and the other tent is focused on their line of AIY kits like this vision kit. Filled with demos of what the kits can do aside from really cool robot owls.

Hopefully these promotional efforts helped many AIY kits find new homes in the hands of creative makers. It’s pretty exciting that such a powerful and inexpensive neural net processor is now widely available, and we look forward to many more AI-powered hacks to come.

Continue reading “Modern Wizard Summons Familiar Spirit”

Visit Tapigami Tape City, Where Tape Is The Fabric Of Society

With so many cool things going on at Bay Area Maker Faire, it takes something special to stand out from the crowd. Covering several hundred square feet of floor and wall with creations made of tape would do the trick. Welcome to Tapigami Tape City, a traveling art exhibit by [Danny Scheible].

Many of us used construction paper, glue, and tape to express our creativity in our youth. Tapigami’s minimalism drops the paper and glue, practitioners of the art stick to tape. It is an accessible everyday material so there is no barrier to entry to start having fun. And while tape does have some obvious limitations, it is possible to get quite creatively elaborate and still use tape almost exclusively.

The Tapigami booth is very happy to accommodate those wishing to learn the way of tape. At their table, young and old alike are welcome to sit down and start building basic shapes out of masking tape. This begins with cones, cylinders, and cubes which are then combined into more complex creations — it’s kind of like OpenSCAD, but all with tape.

Attendees of Bay Area Maker Faire should not miss seeing Tape City in person, it’s quite the sight to behold in the south-east corner of Zone 2. (Not far from the Tindie/Hackaday booth, stop by and say hi!) And while it’s plenty of fun to stick to tape, we can see the Hackaday demographic taking these concepts up a few notches. If you’ve pulled off something mind blowing using tape, you know where our tip line is.

Continue reading “Visit Tapigami Tape City, Where Tape Is The Fabric Of Society”

Open Gaming To Everyone With A Controller Meant To Be Hacked

Gaming controllers have come a long way from an Atari 2600’s single button and digital joystick. As games grew more sophisticated, so did the controllers. This development had a dark side – controllers’ growing complexity have made it increasingly difficult for different-abled bodies to join in the fun. Microsoft has extended an invitation to this audience with their upcoming Xbox Adaptive Controller.

Creative minds have been working on this problem for a while, building an ecosystem of controller hacks to get more people into gaming. These projects require solving problems in two broad categories: the first is to interface with input devices that match a specific user’s needs, the second is then integration into target game device’s control infrastructure.

The value of XAC is eliminating the second category of work and making it reliable: it takes care of all the housekeeping overhead of creating a custom Xbox controller, from power management to wireless communication. As for input device interface, every control needed to play on a Xbox is individually mapped to a standard 3.5 mm jack. Some are pure digital ports, others can transfer an analog value. A 3.5mm plug is a proven consumer-friendly interface that’s easy to work on by anyone who wants to pick up a soldering iron, making this array of jacks a wide-open gateway to limitless possibilities. The 3.5 mm jacks make it easy to build specific configurations, and make it easy for less-technical people to reconfigure for a different player or different game.

We love to see our hacker creativeness applied to help people live normal lives. Making it easy to hack up a custom gaming controller may not be earth shattering, but don’t underestimate the importance of letting people feel included. It does transform lives, one at a time. Plus, it looks like fun to play with.

Continue reading “Open Gaming To Everyone With A Controller Meant To Be Hacked”

IKEA Lamp with Raspberry Pi as the Smartest Bulb in the House

We love to hack IKEA products, marvel at Raspberry Pi creations, and bask in the glow of video projection. [Nord Projects] combined these favorite things of ours into Lantern, a name as minimalist as the IKEA lamp it uses. But the result is nearly magic.

The key component in this build is a compact laser-illuminated video projector whose image is always in focus. Lantern’s primary user interface is moving the lamp around to switch between different channels of information projected on different surfaces. It would be a hassle if the user had to refocus after every move, but the focus-free laser projector eliminates that friction.

A user physically changing the lamp’s orientation is detected by Lantern’s software via an accelerometer. Certain channels project an information overlay on top of a real world object. Rather than expecting its human user to perform precise alignment, Lantern gets feedback from a Raspberry Pi camera to position the overlay.

Speaking of software, Lantern as presented by [Nord Projects] is a showcase project under Google’s Android Things umbrella that we’ve mentioned before. But there is nothing tying the hardware directly to Google. Since the project is open source with information on Hackster.io and GitHub, the choice is yours. Build one with Google as they did, or write your own software to tie into a different infrastructure (MQTT?), or a standalone unit with no connectivity at all.

Continue reading “IKEA Lamp with Raspberry Pi as the Smartest Bulb in the House”

Fail of the Week: 3D Printed Worm Gear Drive Project Unveils Invisible Flaw

All of us would love to bring our projects to life while spending less money doing so. Sometimes our bargain hunting pays off, sometimes not. Many of us would just shrug at a failure and move on, but that is not [Mark Rehorst]’s style. He tried to build a Z-axis drive for his 3D printer around an inexpensive worm gear from AliExpress. This project was doomed by a gear flaw invisible to the human eye, but he documented the experience so we could all follow along.

We’ve featured [Mark]’s projects for his ever-evolving printer before, because we love reading his well-documented upgrade adventures. He’s not shy about exploring ideas that run against 3D printer conventions, from using belts to drive the Z-axis to moving print cooling fan off the print head (with followup). And lucky for us, he’s not shy about document his failures alongside the successes.

He walks us through the project, starting from initial motivation, moving on to parts selection, and describes how he designed his gearbox parts to work around weaknesses inherent to 3D printing. After the gearbox was installed, the resulting print came out flawed. Each of the regularly spaced print bulge can be directly correlated to a single turn of the worm gear making it the prime suspect. Then, to verify this observation more rigorously, Z-axis movement was measured with an indicator and plotted against desired movement. If the problem was caused by a piece of debris or surface damage, that would create a sharp bump in the plot. The sinusoidal plot tells us the problem is more fundamental than that.

This particular worm gear provided enough lifting power to move the print bed by multiplying motor torque, but it also multiplied flaws rendering it unsuitable for precisely positioning a 3D printer’s Z-axis. [Mark] plans to revisit the idea when he could find a source for better worm gears, and when he does we’ll certainly have the chance to read what happens.