Plant’m If You Got’m And Keep’m Alive

Having a few plants around is a great way to liven up your living and/or working space. They look nice, you get to watch them grow and change, and some types of plants can actively improve the room’s air quality. But let’s face it — even the easy ones require a baseline level of care that can easily fall by the wayside. After all, the poor things can’t scream out for water or get up and find a sunnier spot for themselves.

[Ine Hocedez] was tired of watching her plants die and not knowing why. The two main culprits involve water and light, though there can be other issues like soil pH and bugs. It’s easy to get the balance wrong, so why not automate everything?

Plant’m is a complete, portable package that [Ine] designed for a school project. A soil moisture sensor dictates the watering schedule via Raspberry Pi, and water is automatically pumped from an elevated tank.

The lamp is meant to supplement the sunlight, not replace it. But that’s the real beauty of this botanical box — [Ine] can just pick it up and try a different spot if the plant droops or shows burnt spots.

Got the sunlight part down for your plant, but can’t remember to water it? Re-purpose an old Keurig and give it an automatic drip.

Coffee Maker Gives Plants An Automatic Drip

Somehow, [Jeremy S   Cook]’s wife was able to keep a Keurig machine going for 10 years before it quit slinging caffeine. [Jeremy] got it going again, but decided to buy a new one when he saw how it was inside from a decade of water deposits.

But why throw the machine out like spent coffee grinds? Since the pump is still good, he decided to turn it into an automatic plant watering machine. Now the Keurig pumps water using a Raspberry Pi Zero W and a transistor. [Jeremy] can set up watering cron jobs with PuTTY, or push water on demand during dry spells. We love that he wired up a soil moisture sensor to the red/blue LEDs around the brew button — red means the plant is thirsty, purple means water is flowing, and no light means the plant is quenched and happy.

This project is wide open, but cracking into the Keurig is up to you. Fortunately, that part of the build made it into the video, which is firmly planted after the break.

Old coffee makers really do seem suited to taking up plant care in retirement. Here’s a smart garden made from an espresso machine.

Continue reading “Coffee Maker Gives Plants An Automatic Drip”

Hearing Plants Giggle Is Just As Creepy As You Think

While best known for Charlie and the Chocolate Factory, Roald Dahl wrote quite a few similarly oddball stories in his time. One of them, The Sound Machine, is about a device that allowed the user to hear the anguished screams of trees as they were cut down. Sounds kind of weird to us, but [Roni Bandini] liked the idea so much he decided to build his own version.

Now to be fair, the device doesn’t only scream in pain. In fact, most of the time it should be emitting laughs and happy noises. Using a moisture sensor driven into the soil of a plant’s pot, the device uses these audio cues to tell you the relative health of your leafy friend. So assuming you’ve got any sort of green thumb at all, things should be fine.

But once the soil gets too dry and the device determines the plant is in “pain”, things take a turn for the worse. We suppose it doesn’t technically scream out so much as grunt like a zombie, but it’s still not a noise we’d want to hear while walking through the house at night. Luckily, it seems you need to hit the button on the front of the 3D printed enclosure to get it to play the appropriate sound track from its DFPlayer module.

Personally we’d rather build something that makes sure the plants are being taken care of automatically than a gadget that cries out in anguish to remind us that we don’t know what we’re doing. But hey, everyone gets inspired in their own way.

Continue reading “Hearing Plants Giggle Is Just As Creepy As You Think”

Espresso Machine Now Powers Plants

This thing has what plants crave! No, not electrolytes exactly — just water, light, and moisture polling every 30 minutes. We think it’s fitting to take something that once manufactured liquid liveliness for humans and turn it into a smart garden that does the same thing for plants.

So let’s just get this out of the way: the espresso machine was abandoned because it was leaking water from a gasket. [The Plant Bot] cleaned it up, replaced the gasket, and got it brewing, and then it started leaking hot water again from the same gasket. We might have gone Office Space on this beautiful machine at that point, but not [The Plant Bot].

Down in the dirt, there’s a soil moisture sensor that’s polling every 30 minutes. If the moisture level falls below the threshold set appropriately at a life-sustaining 42%, the Arduino is triggered to water the plant through a relay board using the espresso machine’s original pump. If the plant is dry, the machine will pump water for two seconds every minute until the threshold is met. [The Plant Bot] tied it all together with a nice web interface that shows plant data and allows for changes over Bluetooth.

[The Plant Bot] started by disconnecting the heating element, because plants don’t tend to like hot steam. But if the cup warming tray along the top has a separate heating element, it might be neat to reuse it for something like growing mushrooms, or maintaining a sourdough starter if the temperature is right.

Via r/duino

Vinduino Water-Smart Farming – Now With LoRa!

Our five rounds of Hackaday Prize 2018 challenges have just wrapped up, and we’re looking forward to see where the chips fall in the final ranking. While we’re waiting for the winners to be announced at Hackaday Superconference, it’s fun to take a look back at one of our past winners. Watch [Reinier van der Lee] give the latest updates on his Vinduino project (video also embedded after the break) to a Hackaday Los Angeles meetup earlier this year.

Vinduino started with [Reinier]’s desire to better understand what happens to irrigation water under the surface, measuring soil moisture at different depths. This knowledge informs more efficient use of irrigation water, as we’ve previously covered in more detail. What [Reinier] has been focused on is improving usability of the system by networking the sensors wirelessly versus having to walk up and physically attach a reader unit.

His thought started the same as ours – put them on WiFi! But adding WiFi coverage across his entire vineyard was not going to be cost-effective. After experimenting with various communication schemes, he has settled on LoRa. Designed to trade raw bandwidth for long range with low power requirements, it is a perfect match for a network of soil moisture sensors.

In the video [Reinier] gives an overview of LoRa for those who might be unfamiliar. Followed by results of his experiments integrating LoRa functionality into Vinduino, and ending with a call to action for hackers to help grow the LoRa network. It sounds like he’s become quite the champion for the cause! He’s even giving a hands-on workshop at Supercon where you can build your own LoRa connected sensor. (Get tickets here.)

We’re always happy to see open-source hardware projects like Vinduino succeed, transitioning to a product that solve real world problems. We know there are even more promising ideas out there, which is why Hackaday’s sister company Tindie is funding a Project to Product program to help this year’s winners follow in Vinduino’s footsteps. We look forward to sharing more success stories yet to come.

Continue reading “Vinduino Water-Smart Farming – Now With LoRa!”

Automatic Plant Care Minus The Microcontroller

Plants are a nice addition to most any habitat. Many of them bear flowers or attractive foliage, some of them help filter the air, and others, like aloe vera, have medicinal properties. While some plants require very little care, they all need a little moisture at some point. Overall, plant care is a bit fiddly: water them too much and you run the risk of root rot; water too little and risk death by dehydration. Hackaday alum [Kevin Darrah] would prefer not to gamble with either condition, and so in the course of a weekend’s time, he constructed a solar-powered automatic plant watering system from components he had on hand.

While he likely had a microcontroller or two lying around, he didn’t use one. His is a system of MOSFETs that trigger a motorized pump from one of those automatic bug spray bottles to draw from a reservoir and water the plant. The solar panel charges a bank of 6800µF capacitors that [Kevin] took out of an old receiver. When the desired charge is reached, the small soil sensor module is powered, assessing the moisture level. If the level is below the threshold determined by a trimmer pot, the power from the capacitor bank is dumped to the water pump and his plant gets a drink.

[Kevin]’s design deals nicely with the possible pitfalls of solar power. He’s included a 0.1µF cap to ensure latching through the system, and added a bleed resistor so that the pump is never powered unnecessarily. After running it for a couple of days, he’s already seeing moisture regulation in the soil. His complete demonstration and theory of operation is after the break. If you’re into solar power but aren’t quite ready to ditch the µC, check out this Arduino-controlled solution for thirsty tomatoes or this PIC-powered plant pacifier.

Continue reading “Automatic Plant Care Minus The Microcontroller”