Hackaday Prize Entry: An E-Juice Robot

E-cigarettes are increasingly popular, with weird hipster head shops popping up in towns around the globe. While you can buy this e-juice at gas stations and just about anywhere else analog cigarettes are sold, there are inevitably people who want to mix their own propylene glycol, glycerin, water, and nicotine. For them, [conklinnick] is building The End Of An Evil Industry, an e-juice printer that automates the entire process.

This ‘e-juice printer’ is designed to mix the basic ingredients of the consumables for e-cigarettes. These ingredients are propylene glycol and/or glycerin, water, flavorings, and nicotine. [conklinnick]’s project is using different ‘stations’ and a camera slider to dispense these ingredients into a small vial. It’s effectively a barbot dispensing ingredients for silly putty instead of alcohol.

It’s a great project, and although it’s not for everybody – nor should it be for everybody – it’s a great application of homebrew tech we already have for new uses.

 

The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Laptop Batteries For A Power Bank

USB power banks – huge batteries that will recharge your phone or tablet – are ubiquitous these days. You can buy them at a gas station or from your favorite online retailer in any capacity you would ever want. Most of these power banks have a tremendous shortcoming; they need to charge over USB. With a 10,000 mAh battery, that’s going to take a while.

We already have batteries with huge capacities, are able to charge quickly, and judging from a few eBay auctions, can be picked up for a song. [Kumar] is working on a device that leverages these batteries – and the electronics inside of them – to build a smarter power bank.

Right now, [Kumar] is working with Dell Latitude D5xx/D6xx replacement batteries that he can pick up easily. These batteries have an SMBus interface, and with a low power ARM microcontroller and a TI BQ24725a, he has everything he needs to efficiently and safely charge these batteries.

[Kumar] says he’s looking for some community suggestions and feature requests for his project. If you have any, be sure to drop them over on his project page.

The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Circular Knitting Machines

Deep in the recesses of a few enterprising hackerspaces, you’ll find old electronic knitting machines modified for use with modern computers. They’re cool, and you can knit colorful designs, but all of these machines are ultimately based on old equipment, and you’ll have a hard time building one for yourself.

For their entry to the Hackaday Prize, [Mar] and [Varvara] is building a knitting machine from scratch. Not only is it a 3D printed knitting machine anyone can build given enough time and plastic, but this machine is a circular knitting machine, something no commercial offering has yet managed.

We saw [Mar] and [Varvara]’s Circular Knitic last January, but this project has quite the pedigree. They originally started on their quest for a modern knitting machine by giving a new brain to old Brother machines. This was an incredible advancement compared to earlier Brother knitting machine hacks; before, everyone was emulating a floppy drive on a computer to push data to the machine. The original Knitic build did away with the old electronics completely, replacing it with a homebrew Arduino shield.

While the Circular Knitic isn’t completely 3D printed, you can make one in just about any reasonably equipped shop. It’s a great example of a project that’s complex and can be replicated by just about anyone, and a perfect example of a project for The Hackaday Prize.

Check out the video of the Circular Knitic below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Entry: Circular Knitting Machines”

THP Community Voting: Results & A New Round

Last Friday we wrapped up a round of community voting for The Hackaday Prize. The theme? Most Likely To Save The Planet. Now it’s time for some results:

2015THPVotingRound2 (2)

The projects voted Most Likely To Save The Planet by the Hackaday.io community are, in order:

Congratulations to everyone who has a project that was voted up to the top. Even though these rounds of community voting don’t decided which projects make it into the Hackaday Prize semifinals, you’ve earned the respect of your peers and a nifty Hackaday Prize t-shirt.

Since NIRGM – Non-Invasive NIR Glucose Meter won last week, we’re moving down the list to #11 and awarding SciPlo a Hackaday Prize t-shirt as well.

A New Round Of Voting!

This week, we’re asking the Hackaday.io community to vote for the most Amazingly Engineered project entered into the Hackaday Prize. To entice everyone to vote, I’m going to pick a random Hackaday.io user next Friday around 22:00 UTC. If that person has voted, they get a $1000 gift card for the Hackaday Store. If that person has not voted, I’ll be giving a few prizes away to people who have voted. Last week, we gave away a SmartMatrix, an Analog Stepper Gauge, and a Simon Says kit. We’ll probably change that up this week; I don’t know what it will be, but someone who votes will get something. Imagine; giving away stuff just for clicking a button. How magnanimous can we get?

As with every community voting update, it is requested that you vote. If you need a nudge to understand how this works, here’s a video tutorial on how to vote.

circuit board

Hackaday Prize Entry: Saving Water With The Vinduino

[Reinier van der Lee] owns a vineyard in southern California – a state that is in a bit of a water crisis. [Reinier van der Lee] also owns an arduino and a soldering iron. He put together a project the reduces his water usage by 25%, and has moved it to open source land. It’s called the Vinduino.

water animationIts operation is straight forward. You put a water sensor in the dirt. You turn on the water. When the water hits the sensor, you turn the water off. This was not, however, the most efficient method. The problem is by the time the sensor goes off, the soil is saturated to the point that the plant cannot take it all up, and water is wasted.

The problem was solved by using three sensors. The lowest most sensor is placed below the roots. So it should never go off. If it does, the plant is not taking in all the water, and you can reduce the output. The two sensors above it monitor the water as it transitions through the soil, so it knows when to decrease the water amount and watering cycle times.

Be sure to check out the project details. All code and build files are available on his github under the GNU General Public License 3.0


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Lose Yourself To Dance

Not every project for The Hackaday Prize needs to solve a pressing concern, save the planet, or help people. Sometimes, it just needs to be cool. [Jeremy]’s project is certainly cool. He’s building a touch-sensitive disco floor for the awesomeness of Saturday Night Fever combined with the technical complexity of the Billy Jean music video.

We’ve seen a few disco floor builds over the years, and for the most part, [Jeremy] isn’t straying too far from a well-tread path. He’s using LED strips to light his build, cutting the frame for the floor out of plywood and translucent squares, and using an ATMega to control each panel. So far, nothing out of the ordinary.

The trick to this build is that every square has a capacitive touch sensor. Underneath each translucent panel is a bit of wire mesh. Because the disco floor has 144 nodes, running the standard capacitive sensor library just wouldn’t work; the delay in measuring each node adds up very fast. By rewriting [Paul Stoffregen]’s capacitive sensor library, [Jeremy] was able to run many panels at once.

Right now [Jeremy] has a single panel that responds equally well to bare feet as it does to motorcycle boots. It’s exactly what you need in an interactive dance floor, and we can’t wait to seen the entire floor running.


The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: Biohand

One of the greatest uses we’ve seen for 3D printing is prosthetics; even today, a professionally made prosthetic would cost thousands and thousands of dollars. For his entry to the Hackaday Prize, [Martin] is building a low-cost 3D printed hand that works just like a natural hand, but with motors instead of muscles and tendons.

There are a lot of 3D printed finger mechanisms around that use string and wires to move a finger around. This has its advantages: it’s extremely similar to the arrangement of tendons in a normal hand, but [Martin] wanted to see if there was a better way. He’s using a four-bar linkage instead of strings, and is driving each finger with a threaded rod and servo motor. It’s relatively strong; just the motor and drive screw system was able to lift 1kg, and this mechanical arrangement has the added bonus of using the servo’s potentiometer to provide feedback of the position of the finger to the drive electronics.

This is far from the only prosthetic hand project in the running for The Hackaday Prize. [OpenBionics] is working on a very novel mechanism to emulate the function of the human hand in their project, and [Amadon Faul] is going all out and casting metacarpals and phalanges out of aluminum in his NeoLimb project. They’re all amazing projects, and they’re all making great use of 3D printing technology, and by no means are there too many prosthetic projects entered in The Hackaday Prize.


The 2015 Hackaday Prize is sponsored by: