Tetris Goes Full Circle

As a game concept, Tetris gave humanity nearly four solid decades of engagement, but with the possibility for only seven possible puzzle pieces it might seem a little bit limiting. Especially now that someone has finally beaten the game, it could be argued that as a society it might be time to look for something new. Sinusoidal Tetris flips these limits on their head with a theoretically infinite set of puzzle pieces for an unmistakable challenge.

Like Tetris, players control a game piece as it slowly falls down the screen. Instead of blocks, however, the game piece is a sinusoid that stretches the entire width of the screen. Players control the phase angle, amplitude, and angular frequency in order to get it to cancel out the randomly-generated wave in the middle of the screen. When the two waves overlap, a quick bit of math is done to add the two waves together. If your Fourier transformation skills aren’t up to the task, the sinusoid will eventually escape the playing field resulting in a game over. The goal then is to continually overlap sinusoids to play indefinitely, much like the original game.

While we’re giving Tetris a bit of a hard time, we appreciate the simplicity of a game that’s managed to have a cultural impact long after the gaming systems it was originally programmed for have become obsolete, and this new version is similar in that regard as well. The game can be quite addictive with a lot to take in at any given moment. If you’re more interested in the programming for these types of games than the gameplay, though, take a look at this deep-dive into Tetris for the NES.

Pneumatic Origami

Odds are that if you’ve been to the beach or gone camping or somewhere in between, you are familiar with inflatable products like air mattresses. It’s nothing spectacular to see a rectangle inflate into a thicker, more comfortable rectangle, but what if your air mattress inflated into the shape of a crane?

We’ve seen similar ideas in quadcopters and robots using more mechanical means, but this is method uses air instead. To make this possible, the [Tangible Media Group] out of [MIT’s Media Lab] have developed aeroMorph — a program that allows the user to design inflatable constructs from paper, plastic or fabric with careful placement of a few folding joints.

These designs are exported and imprinted onto the medium by a cartesian coordinate robot using a heat-sealing attachment. Different channels allow the medium to fold in multiple directions depending on where the air is flowing, so this is a bit more complicated than, say, a bouncy castle. That, and it’s not often you see paper folding itself. Check it out!

Continue reading “Pneumatic Origami”

Furniture Bots, Transform

This mechanized table automatically expands from seating for six to seating for twelve. We tried to capture the action with the three images above but don’t miss the transforming goodness in the video after the break. Alas, we’ll never see something like this in real life because it resides on a yacht worthy of Robin Leach’s attention. We wouldn’t have a problem copying the geometry of the tabletop pieces, but there’s got to be some serious design work to pull off the structure controlling the movement. No solid price is listed, but the creators note that construction costs are in the tens-of-thousands of British Pounds. We’ll stick to our Ikea furniture hacks for now.

Continue reading “Furniture Bots, Transform”